Programming Camp
Summer 2023

Marcelo Sena, Summer 2023

| am grateful to Parth Sarin, Ciaran Rogers, Diego Jimenez and Brian Higgins for sharing material.

IFYOUGOULD AGTUALLY MEET THE
EXPECTATIONS YOU SET

G R

. »

4

e
=
S
——

]
-
“»

»

£

4

THAT.WOULD BE GREAT

What to expect from the programming camp:

* Familiarize all students with typical tools of Python
* Provide a clear basis so that students can further learn by themselves
* Level the playing field (so it may be slow for some)

 Make you aware of what is out there (for when you need more RAM or need to 100x faster)

What NOT to expect from it:
 Full proficiency (sorry!) - we are always learning =)

One important ground rule:

* Work together and help each other!

Tentative Outline

*Day 1:

*\Why is coding important?

*Getting started with Python + basics
*Day 2:

*Object oriented programming

e Useful libraries

*Debugging

*General programming advice, other languages and further resources
*Day 3:

eServers, text editors and command line
*Day 4:

*Parallel + GPU computing

*Al and Coding

Data usage has increased in Economics (Angrist et al 2017, AER PP)

1 -
e
a 0-9 N “...ol":l::-::_':_
- — s T
:g 0.8 - /'—'/’:0"-0""..0-:::.’ "
o 0'7- ,./' oo, :. //
o o o* it
E 0.6 - :\:0\|ll$‘:0"3,0.. “'.'.’ o "5"1?7,‘.rh_.;/u\ "/
m - L% N 41/><_5:~/::-—5‘~,_‘_| P
- 0.5 - ~ 5 e g
O . / — < - e - -
- — 0.4 - h ALY T v — ,.G,I‘\-..,;ﬂ(.'-,..‘. '
'.(-5 0 3 Q:"...,.,-..--——- —_— -{\--.o"
m . - 1-;.."-,.\.
-
w 0.2 -
0.1 -
0 .

1980 1985 1990 1995 2000 2005 2010 2015
Publication year

Micro Macro LLLLLLLLEN o 5 Intermational
— —=—= Labor Finance’ i o) e e Development
--------- Misc

FIGURE 4. WEIGHTED FRACTION EMPIRICAL BY FIELD

Note: Five-year moving averages of the weighted fraction of
publications in each field that are empirical.

1 -
0.97
0.8 -
0.7 -
0.6 7
0.5°
0.4-
0.3 "
0.2-
0.1-

0-

Share of articles

1980 1985 1990 1995 2000 2005 2010 2015

Publication year

B Empirical [Theoretical

Econometrics

FIGURE 6. WEIGHTED PUBLICATIONS BY STYLE

Note: Five-year moving averages of weighted publication

shares in each style.

Even among theorists!!! (Akbarpour, Malladi and Saberi (2020))

Just a Few Seeds More:
Value of Network Information for Diffusion®

Identifying the optimal set of individuals to first receive information (‘seeds’)
in a social network is a widely-studied question in many settings, such as diffusion
of information, spread of microfinance programs, and adoption of new technolo-
gies. Numerous studies have proposed various network-centrality based heuristics
to choose seeds in a way that is likely to boost diffusion. Here we show that, for
the classic SIR model of diffusion and some of its generalizations, randomly seeding
s + x individuals can prompt a larger diffusion than optimally targeting the best
s individuals, for a small z. We prove our results for large classes of random net-
works, and verify them in several small, real-world networks. Our results identify
practically relevant settings under which collecting and analyzing network data to
boost diffusion is not cost-effective.

Even among theorists!!!

A “Pencil-Sharpening” Algorithm for Two Player
Stochastic Games with Perfect Monitoring

By Dilip Abreu, Benjamin Brooks, Yuliy Sannikov
April 28, 2016| Working Paper No. 3428 Related

Economics N Yuliy Sannikov
s\ Professor, Economics

Download

We study the subgame perfect equilibria of two player
stochastic games with perfect monitoring and geometric
discounting. A novel algorithm is developed for calculating
the discounted payoffs that can be attained in equilibrium.
This algorithm generates a sequence of tuples of payoffs
vectors, one payoff for each state, that move around the
equilibrium payoff sets in a clockwise manner. The trajectory
of these “pivot” payoffs asymptotically traces the boundary of
the equilibrium payoff correspondence. We also provide an
Implementation of our algorithm, and preliminary simulations
Indicate that it is more efficient than existing methods. The
theoretical results that underlie the algorithm also yield a
bound on the number of extremal equilibrium payoffs.

A Back

Why Python?

* Popular! (most popular language according to many rankings)
 Big community

* Free and open source

* (General purpose: “second best language for everything”

 For economists: more uses outside macro problem sets!

Why Python?

ECONOMETRICA

JOURNAL OF THE ECONOMETRIC SOCIETY

Original Articles (& Full Access

Using the Sequence-Space Jacobian to Solve and Estimate
Heterogeneous-Agent Models

Adrien Auclert 24, Bence Bardoczy B4 Matthew Rognlie B4, Ludwig Straub 2«
First published: 27 September 2021 | https://doi.org/10.3982/ECTA17434 | Citations: 1
Find it @ Stanford

For helpful comments, we thank four anonymous referees, as well as Riccardo Bianchi-Vimercati, Luigi
Bocola, Michael Cai, Jesus Fernandez-Villaverde, Joao Guerreiro, Kurt Mitman, Ben Moll, Laura Murphy,
Martin Souchier, and Christian Wolf. Martin Souchier also provided outstanding research assistance. This
research is supported by National Science Foundation Grant SES-1851717. This paper reflects our
personal views and does not necessarily represent those of the Federal Reserve Board or the Federal
Reserve System.

IS SECTIONS A\, TOOLS <« SHARE

T PDF

README.md

Sequence-Space Jacobian (SSJ)

SSJ is a toolkit for analyzing dynamic macroeconomic models with (or without) rich microeconomic heterogeneity.

The conceptual framework is based on our paper Adrien Auclert, Bence Barddczy, Matthew Rognlie, Ludwig
Straub (2021), Using the Sequence-Space Jacobian to Solve and Estimate Heterogeneous-Agent Models,
Econometrica 89(5), pp. 2375-2408 [ungated copy].

Requirements and installation

SSJ runs on Python 3.7 or newer, and requires Python's core numerical libraries (NumPy, SciPy, Numba). We
recommend that you first install the latest Anaconda distribution. This includes all of the packages and tools that
you will need to run our code.

To install SSJ, open a terminal and type

pip install sequence-jacobian

Optional package: There is an optional interface for plotting the directed acyclic graph (DAG) representation of
models, which requires Graphviz for Python. With Anaconda, you can install this by typing conda install -c
conda-forge python-graphviz .

Getting started with Python

Setting up Python in your computer

You don’t have to do this now!

For programming camp, we will use Google Colab:

» https://colab.research.google.com/

To have Python in your computer, you can either:

* |nstall the core Python package: https://www.python.org/downloads/

* |nstall the Anaconda distribution: https://www.anaconda.com/products/enterprise
Anaconda comes with Python + some extra Pythonic bells and whistles.
Setting up overall workflow can be done in multiple ways and also a matter of personal taste.
| recommend that you set up and experiment with this before Fall quarter starts.

* Preferably during programming camp period so we can help you debug.

https://colab.research.google.com/
https://www.python.org/downloads/
https://www.anaconda.com/products/enterprise

Setting up

What | use, for reference (VS Code + Jupyter Extension)

EXTENSIONS: MARKETPLACE Y O @ import numpy Untitled-1 @ >~ M - = Interactive-1

1 import ? H X Clear All O Restart =] Variables [Save .P Export Expand - L, base (Python 3.8.0)

jupyter

Jupyter L 89ms

Jupyter notebook support, interac... python 3.8.0 (defaUIt: Nov 6 2019; 154901)
Microsoft o @ Type 'copyright’, 'credits' or 'license' for more information
Jupyter Keymap IPython 7.29.0 -- An enhanced Interactive Python. Type '?' for help.

Jupyter keymaps for notebooks
Microsoft g .
- v/ 1mport numpy
Jupyter Notebook Render... "V 1ms

Renderers for Jupyter Notebooks ...
s

Microsoft 3 H

5

VS Code Jupyter... & 343K % 35

An easy to use extension for previ...
jithurjacob Install

jupyter-notebook-vs... < 70K * 1
Runs jupyter notebooks in vscode
Sam Helms Install

My Jupyter Notebo... @ 38K % 25
My Jupyter Notebook Previewer
colinfang Install

Jupyter PowerToys P 9K
Experimental features for Jupyter ...
Microsoft Install

Jupyter-QTConsole P 9K
Starts a remote Jupyter QTConsol...
Andreas Klausen Install

Jupyter Theme D3K k5
A colour theme based around Jup...
Sam the Programmer Install

Jupyter Checkpoint D 1K
Checkpoint control of Jupyter
Peng Lv Install

PROBLEMS (5 OUTPUT TERMINAL JUPYTER ») g bash + ~ [I] 1

Ly Supyier ™ The default interactive shell is now zsh.
valuate a Hy form (S-expression...

Jonathan Huston nstal~y 10 update your account to use zsh, please run "chsh -s /bin/zsh'.
Jupyter Notebook ... @1k 3 FOr more details, please visit https://support.apple.com/kb/HT208050.
Converts sectioned pythonfilesfr.. (base) DN@a25c4c9:Codes marcelosena$

Yigit Ozgumus Install

Remote editing - Jupyter < 6K
This package allows you to edit fil...
Sam Helms Install

Jupyter Power Tools ... 247 % 4
Power tools for Jupyter Notebooks
Don Jayamanne Install

Jupyter Vim Keymap > 164
Vim Keymaps for Jupyter Extension

willemmirkavich Inotall -

®0MAS5 --INSERT -- Ln1, Col13 Spaces:4 UTF-8 LF Python 3.8.0('base':conda) &' (%

1-

!
L
—
N
JNC
—_

Setting up
Google Colab

» https://colab.research.google.com/

e Create a new notebook

 Make sure you can run the following

|
* You can run new code by either

* Clicking the “play" button to the left of the cell

* Pressing shift + enter (or return in a Mac)

https://colab.research.google.com/

Python Basics

Some basic syntax
Variables and Type

e Variables declaration in Python is done by

variable = value

* Python automatically infers the type of a variable from the type of the value.

* Variables can change type over the course of a program execution.

Some basic syntax
Variables and Type

* Know your types!

 E.g. documentation of the absolute function in Python.

abs(x)
Return the absolute value of a number. The argument may be an integer, a floating point number,
or an object implementing abs (). If the argument is a complex number, its magnitude is
returned.

* [ypical number types: integers and floats.

e Jypical text: strings

Some basic syntax
Variables and Types

* Different types occupy different memory sizes

Memory Size

Data Type Memory Size

char 1byte

int 4 bytes

float 4 bytes

double 8 bytes

Some basic syntax
Variables and Types

* Functions operate differently on different types

import numpy as np

array = np.array (/| ’ 1)
integer =
another array =
np.array ([' 1)
a list = [1,2]
print (array + 1nteger)
print (array + another array)
print (array + a list)
(

print(a list + 1nteger)

Some basic syntax

Math operations

o Standard mathematical syntax, except for exponentiation.

Addition
Subtraction
Multiplication
Division
Integer Division
Modulo Operator

Exponentiation

NS

it =1 5

5T S

Numeric Operation Operation Syntax Assignment Syntax

S =
% = 5
G e S
s J= B
R J)= B
X o= 5
4l S

Boolean Operation

Operation Syntax

Not not a
And a and b
Or a or b
Equals (Not Equals) a == & U= o)
Greater (OrEqual) a > b (a >= b)
Less (Or Equal) z < lg (A <= lg)
Chained

Expressions

a = > @

Some basic syntax

Math operations
« Bitwise operations: and (&), or (|)

 Operates element by element on bit representation of numbers
¢ €.0.2|3=3

e 2inbitis 10

 3in bitis 11

e Return=[1or 1]|0 or 1] = 11 = 3 In bit representation

e Conclusion: in practice, test multiple events, use and/or

Some basic syntax
Strings

game = "HHTTTHHTHTT"

len (game)

"HTH" in game

Some basic syntax

Strings IMPORTANT: THE FIRST ELEMENT IS INDEXED BY 0!
game = "HHT|TTHHTHTT"
game[3] e "HHr'lr-lr-lHHr-lHr-lr'ln
g | 2 8 4 5 6 / 3 9 10
game [—2] == "HHT|TTHHTHMT"
-11-10 9 8 -7 6 -5 4 -3 -2 -]
game [3:8] == "HHTTTHHTHTT"
s I 2 3 4 5 6 / 8 9 |U
game [::2] == "HHTTTHHTHTT"
0 1 2 3 4 5 6 7 8 9 10

Some basic syntax
Tuples

 Atuple is a sequence type, meaning it stores an ordered collection of objects
* Immutable, meaning it cannot be changed after creation

o Stores heterogeneous data

* Packing...
congrats = ("Happy", 4, "you", "dude!")
° U N paC kl ng . Parentheses are conventional. but optional!
siblel = || oy 2)
Three: WO ofle = 111D

POW (*tup) «— The * indicates tuple unpacking

* Python understands the last expression as pow(3,2,1) = mod(3/°2,1)

Some basic syntax

Lists

* A list iIs a mutable sequence type

psets completed

e Special list methods include

[Lnmagirce " o lawa

.count (elem)
.index (elem)
.append (elem)
.extend (iterable)
S i s e (itelse el am)
.sort (key=None, reverse=False)

.reverse ()

P00 ({al==1.]

.remove (elem)

Counts the occurrences of elem in the list.

Returns the index of the first occurrence of elem in the
list.

Appends the element elem to the end of the list.

Extends the list by appending all elements of iterable
to the end.

Inserts the element elem at the index idx of the list.

Sorts the list in-place.

Reverses the list in-place.

Returns and removes the ith element from the list.

Removes the first instance of e 1lem from the list, or raises
ValueError.

* This Is object-oriented programming!

Some basic syntax

Lists

e Consider

tuple lists = (['listl'],["list2'])
[SEsiie N IERsiE=N N0N S append (ano CCHamss=ET ')

 Why were we able to change a tuple element?

Some basic syntax

Lists

e Consider

tuple lists = (['listl'],["list2'])
[SEsiie N IERsiE=N N0N S append (ano CCHamss=ET ')

 Why were we able to change a tuple element?
* Juples stores references to underlying objects.

* |f the objects being referenced are mutable, they can still be changed.

Some basic syntax

A detour on assignment, copy and deep copies

* Assignments for sequence types in Python are done by reference.

* This means that assignments does not create copies, but only alias (a new
name) for the same existing object.

* The following example illustrates this:

Some basic syntax

A detour on assignment, copy and deep copies

* For soft copies, we can use the copy function from the copy module.

import copy

e
b = copy.copy(a)
all] =

* |f the sequence types contain other sequence type, then we need deep copies

a [1,['1list element 1','list element 2']]
b = copy.deepcopy (a)
a[l]1[0] = '"new value'

Some basic syntax

Dictionaries and Range

* Other sequence flavor types (dictionaries are actually Mapping types)

* Dictionaries provides key value pairs.
dic = {'key 1' ¢ 'value 1', 'key 2' : 3, 'key 3" : ['a list']}

 Ranges represent a sequence of numbers typically used in for loops.

a range type = range (l0)

Some basic syntax

Loops
* Python has both for and while loops.

* The beginning and end of loop blocks are defined with identation!

 Example
for 1 i1n range (10) :
print (1)

e The same Is true for If statements

a condition = True
1f a condition:

print('a condition 1s True')
else:

print('a condition 1s False')

Some basic syntax

Loops + Lists = List Comprehension

* List comprehension is a nice syntactic sugar to create objects iteratively In
lists.

 Example:

even numbers list = [1 for 1 1in range(l0) 1f 1 % == (]

e A syntax also to write loops more concisely

* not necessarily preferable though

fibonacci list = []
[fibonacci list.append(0) 1f 1 == else fibonacci list.append(l) 1f 1 == else

fibonaccl list.append(fibonacci list[i1-1] + fibonacci list[1-2]) for 1 in range (10)]
print (fibonacci 1list)

Some basic syntax

Functions

* As with loops, a function definition ends according to indentation.

def f(x1, x2):

return x3

* Function arguments can be positional or keyword and accepts default values.

Positional-only Positional-or-keyword Keyword-only

N 4 A 4 Y
Elzl 9) @ o8 e o gigg)

= .

Default arguments

Some basic syntax

Functions

* Functions can also take a varying number of arguments (variadic arguments)

def f many args (*objects):
print (objects)

=)
y 2y 3))
r 2y 3))

f many args(l,
f many args (* (
f many args((

Some basic syntax

Functions

* The first string inside a function body is taken to be its documentation string.
def f (x1, x2):

Description: Does some things.

Arguments:

- x1 (1nt): The first x.
- X2 (1nt): The second x.
Returns:

- 1nt: Integer representing the third x.

wiiimn

return x3

praint (f doc)

Some basic syntax
Scoping

* Scoping refers to the rules that Python will follow to search for an object.
e Search goes from “inner to outwards”

* think about how you would search for your lost keys

Nightstand Room House World

Local Scope ——>» ENclosing Scope ——3 Globals —> Builtins
(if any)

Some basic syntax

Scoping
« Example def f():
print (x)
def g (foo):
X p—
_:OO ()
print (x)
X p—
g (L)

 What is the output of g(f)?

Some basic syntax

Scoping def f():
print (x)

* Example gef 5 (foo):
=

ClehEa - I Bilaeis feinge/cifac iR T=1de a function ()%
print (x)
foo ()
print ("below will be the function defined 1nside g")
a function defined inside a function ()
print (x)

x =
g (L)

 What is the output of g(f)?

Some basic syntax

Scoping def f():
print (x)

* Example gef g (foo) :

x =
ClehEa - I Bilaeis feinge/cifac iR T=1de a function ()%

print (x)
foo ()
print ("below will be the function defined 1nside g")
a function defined inside a function ()
print (x)

g (f)
 What is the output of g(f)?

 Conclusion: a scope search begins in the environment the function is defined!

Some basic syntax
Scoping

 What happens in the following example?

" =
def myfun () :

return x
v =

—

myfun ()

Some basic syntax
Scoping

 What happens in the following example?

X:
def myfun () :
return x

X:
my £

e (Conclusion: a function searches for a variable when it is called, not when it is defined

Object-Oriented Programming

Programming Paradigms

* A way to classify programming languages based on their features.
* A language can be classified into multiple of these.
 [he common paradigm terminology you may encounter are two:
* Functional programming -> R! (Remember maps)
* Objected-oriented programming (OOP) -> Python!
 Most languages nowadays blends all of these paradigms.

 Python is actually multi-paradigm.

Object-oriented Programming
* With OOP, data and functions are “bundled together” into
objects.
* In Python, everything is an object, which consists of;
* Atype
* An identity
* Data
* Methods

Object-oriented Programming

* High-level idea: create blueprint

* E.g. create a blueprint for creating a house.
* houses are different, but they share many similarities
* this makes it easy to build many houses.

* In economics: blueprint for heterogeneous agents

Object-oriented Programming

* We have already seen an instance of OOP in a previous example

praint (£ @l@iess)

« doc__ is a method of a function f (which is itself an object).

* underscores have no syntactical meaning

e just there to avoid method names clashes

Object-oriented Programming

 With OOP we can create our own objects and write methods for it!

e | et’'s write a class that Is a class that defines a consumer.
class Consumer:

def init (self, g, wealth):
self.risk aversion = g
self.uti1il =

self.wealth = wealth

def cat (self, c):

self.util += c**(l-self.risk aversion)/(l-self.risk aversion)
self.wealth -= c

Object-oriented Programming

Subclasses

* We can also define a subclass.

* |dea: create specialization of objects with specific methods
» But still adheres still accepts the parents’ methods

* |n computer-science lingo, this is called inheritance

* Think about a class for a motorized vehicle

* we could then build a subclass for cars

* For our consumer class case, some consumers may have a borrowing constraint

Object-oriented Programming

Subclasses

class Consumer Constrained(Consumer) :

class Consumer:

lpd amdiE (8eli, g, weelelm) e
se Ll rigk gversion = g Cieajf

~_1nit (self, g, wealth):

1f.util = . . :
ey o (Consumer Comsieischliol=teMERse. | i | init (g,

deff cat(sclifEs e} : Wealth)
self.uttil += c** (—self.risk_aversion)/(—8elf, 2ilslk eweiEdion)
Sl weslith —= 2@ LE , Lo
def borrow(self, 1):
self.loan += 1
self.wealth += 1
consumerl = Consumer Constrained(Z,)

consumerl.eat (2)

print (consumerl.util)
print (consumerl.wealth)
consumerl.borrow (D)
print (consumerl.wealth)

Object-oriented Programming

 Some packages require you to write classes to leverage on its own methods.
* More involved example from PyTorch (deep learning framework).

* This is PyTlorch first example in its tutorial.

import torch.nn as nn

class NeuralNetwork (nn.Module) :
def 1nit (self):

super (NeuralNetwork, self) init ()

self.flatten = nn.Flatten ()

self.linear relu stack = nn.Sequential (
nn.Linear (x ’) s This is a subclass example: super() tells
nn.ReLU(), Python for the class NeuralNetwork to
nn.Linear () iInherit its methods from the base class
N ' ReT,U () ’ ’ (nn.Module)

° ’

nn.Linear (,) ,

Useful libraries

Useful libraries

* NumPy
 Matplotlib
* SciPy
 Pandas

* Sympy

e Numba

Useful libraries

Installing new packages

* |f you need to install a new package, you should run either (depends on how you installed
Python)

plp 1nstall numpy conda 1nstall numpy

* |n Python, you can also create virtual environments, which are essentially “local workspaces”
which already contains the packages required (and its versions) to run the programs you desire.

 These are essentially used to ensure consistency of versions of packages consistent when,

for example, running programs across different different computers.
conda create —name <environment—-name>

* Jo create an environment or | |
python -m venv <environment-directory>

 We won’t do any of this, but its useful to know it exists.

Useful libraries
Numpy

* A library for computations with array (think “Matlab in Python”)
* Native functions in NumPy are very efficient (written in C).

* You will probably need it for virtually any use of Python for your problem sets/
projects.

import numpy as any alias for numpy

)

X ’
L)

e

any alias for numpy.random.randn (
any alias for numpy.random.randn (

*x 4+ e

Y

beta hat = any alias for numpy.linalg.inv(x.T @ x) @ x.T @ vy

Useful libraries
Numpy

* For the alias, people typically use

import numpy as np

 Numpy allows you to the array operations you would expect.

* |f you don’t find a method/function that does what you want then you are
probably trying to do it the wrong way.

 Afew examples: import numpy as np
data = np.array(l[Ll, 2], [3, 41, [5, ©6]])
print (data[0, 1])
print (datal[0,0:2])
print (data.max ())
print (data.max (axis = 0))
print (data.reshape (2, 3))

Useful libraries
Plotting

 The main plotting library is Matplotlib.

* For basic usage, it is typically loaded as

import matplotlib.pyplot as plt

* Plotting a function on a grid
import matplotlib.pyplot as plt

import numpy as np

np.linspace (0, ')
v o= + * np.sin(Z2 * x)

X
|

Useful libraries
Plotting

* For different plot types, use a different plotting method.

* Plotting our regression data as a scatter

import matplotlib.pyplot as plt
plt.scatter (x,Vv)
plt.show()

Useful libraries

Plotting

* The plot function has many arguments for customatization.

import matplotlib.pyplot as plt

import numpy as np

X

O O

np.linspace (0,
+ * np.sin(

.plot (x,y,color
.Sshow ()

')

* %)

'red')

Property

agg_filter

alpha
animated
antialiased or aa

clip_box

clip_on

clip_path

colororc

Description

a filter function, which takes a (m, n, 3) float
array and a dpi value, and returns a (m, n, 3)
array and two offsets from the bottom left

corner of the image
scalar or None
bool

bool

Bbox
bool
Patch or (Path, Transform) or None

color

Useful libraries
Plotting

* You can customize axis, legends, titles, etc... with methods from the PyPlot
object

matplotlib.pyplot
matplotlib.pyplot.acorr
matplotlib.pyplot.angle_spectrum
import ma tp lotl e . PVYP lot as © hE matplotlib.pyplot.annotate
import numpy as np matplotlib.pyplot.arrow
matplotlib.pyplot.autoscale

matplotlib.pyplot.autumn

X = np. linspace (’ ’) matplotlib.pyplot.axes

y = + * np.sin(2 * Xx) matplotlib.pyplot.axhline
matplotlib.pyplot.axhspan

plt.axes (xlabel = '"the x grid', ylabel = 'the value of the function') matplotlib.pyplot.axis

plt.plot (x,y,color = 'red', label = 'a transformation of the sign function') matplotlib.pyplot.axline

plt.legend() matplotlib.pyplot.axviine

ol - Slaeny () matplotlib.pyplot.axvspan

matplotlib.pyplot.bar
matplotlib.pyplot.bar_label
matplotlib.pyplot.barbs
matplotlib.pyplot.barh
matplotlib.pyplot.bone
matplotlib.pyplot.box

matplotlib.pyplot.boxplot

Useful libraries
Plotting

* You can create subplots with the subplots method.

import matplotlib.pyplot as plt
import numpy as np

X = np.linspace (0, * np.pi,)
Yy = np.sin((x ** 2)
fig, (axl, ax2) = plt.subplots(Z)

fig.suptitle('Vertically stacked subplots')
axl.plot(x, V)
ax?2.plot (x, -Vv)

Useful libraries
Plotting

* You can also use a style file

print (p.
plt.sty.

t.style.avallable)

e.use (':

f1vethirtyveight')

Useful libraries
Plotting

* You can even create your own style file.

* Place it in ~/.matplotlib/stylelib/

figure.figsize: 7/,
font.family: Helvetica
font.size:
axes.linewidth:
axes.labelpad:
axes.labelsize:
text.usetex: True

axes.prop cycle: cycler('color', ['COCO9C/",'929591",'3808080", "000000"])

Useful libraries
SciPy

* Provides algorithms for optimization, integration, interpolation, differential
equations, etc...

* An optimization example;

max log(cy) + 2log(c,) S.X. pocy + pic; =W

S0 |

Useful libraries
SciPy

* An optimization example (note syntax will depend on the method you pick!):

from scipy.optimize import LinearConstraint, Bounds, minimize
import numpy as np

wealth =

p cO =

p cl =

bounds = Bounds (| -], [np.1nf, np.inf])

linear constraint = LinearConstraint([[p c0, p cl]], |], [wealth])

def utility(c):

return -1~ (np.log(cl[0]) + Z*np.log(c[l]))
x0 = np.array ([, 1)
res = minimilze (utility, x0, method='trust-constr', constraints=[llnear constraint],

options={'verbose': }, bounds=bounds)

Useful libraries

Pandas (Dataframes)

 The main package to manipulate data in Python is pandas.

 The main object there is also a dataframe, which is the typical datatable with
rows being observations and columns being different variables.

* |n Python we typically do not use piping”* syntax (as e.g. in R/tidyverse), but
we can leverage dataframe methods.

 Download raw data for Apple, Microsoft, IBM and Uber balance sheet data.

https://github.com/marcelosena/programming_camp/blob/main/wrds_data.txt

*although possible, see pipe package.

https://github.com/marcelosena/programming_camp/blob/main/wrds_data.txt

Useful libraries

Pandas (Dataframes)

 Manipulating raw data:

import pandas as pd
import matplotlib.pyplot as plt

CELE

e Ll AN eV s data . txt', sep = "

print (data.head())

data['datadate'] = pd.to datetime (data['datadate'],

data

data.set 1ndex('datadate')

print (data.columns)

data = data.drop('addl', axis = 1)
data = data.drop (index=pd.to datetime ('2020-06-30"))
data.groupby ('conml') ["actg'] .plot (legend = True)

plt.show()

")

format

Useful libraries

Pandas (Dataframes)

e Other useful panda methods

data.merge(...)
data.pivot (...)
data.i1loc[0, ¢
data.i1loc[:, 0]
data.loc[:, "coll']
data.shift (1)

data.dropna ()

Useful libraries
SymPy

« SymPy is a computer algebra package for Python.

» Useful for tedious algebra or double checking own derivations.

from sympy import *

c = symbols('c', real = True)
v = Function('v') (c)
param = symbols('\gamma', real = True, positive = True)

objy] = log(c) + param*v

c foc = diff (obj, c)

c sol = solve(c foc, c) [0]
print (c sol)

Useful libraries

Numba

* Numba is a package that allows “free” code speedup

* \We will do this more in-depth in Econ 210

import numba

® Example import random

import time

start = time.time ()
def monte carlo pi(nsamples):
acc =
for 1 i1n range (nsamples) :
X = random.random ()
y = random.random ()
1f (x ** + vy ** 7)) <
acc +=
return * acc / nsamples

print (monte carlo pi ())
end = time.time ()
print (end - start)

Useful libraries

Numba

* Speeding up: @numba.jit() is called a function decorator

start = Time.time ()
dnumba.jit ()
def monte carlo pi(nsamples):

acc =
for 1 i1n range (nsamples) :
X = random.random ()
y = random.random ()
1f (x ** + vy **) <
acc +=
return * acc / nsamples

print (monte carlo pi ())
end = time.time ()
print (end - start)
» Recommend setting @numba.jit(hnopython = True) or the shorthand @numba.njit()

* Guarantees weakly faster code (modulo debugging)

Useful libraries

Numba

* Once a function is compiled, global variables are “hard-coded” into function

* This will make functions seem to behave differently from Python’s standard
scoping rules

import numba
import numpy as np

X:
ClE SR
print (x)

dnumba.njit ()

def numba f():
print (x)

numba £ ()

£ ()

()
numba £ ()

Detour: function decorators

* A function decorator would be the coding equivalent of a functional/operator
(@ machine that takes a function as an argument)

import time
import math

def function timer (func) :

de i bnimichs S R¥ohacish B lamckaec)

beg time.time ()

s (@] **kwargs)

end = time.time ()

print ("Total time to run " + func name + " function: " + str(end - begin))

return innerl

@function timer
def compute model (num) :
print ("Model computed succesfully!")

compute model (10)

* The decorator above will automatically make a function time itself

Useful libraries

Other libraries/Python related languages

» scikit-learn: machine learning + other statistical technigues
 Pylorch: deep learning

» Keras: deep learning

* Jensorflow: deep learning

e Mojo

e Jax

Debugging

Debugging

 Debugging may also involve some personal taste.
* Printing objects and running a code may work, but it is not the efficient way.

 Python has a native debugger which allows you to pause code at desired
points of execution.

* You can then inspect your variables at that point of the execution or run the
code line by line.

* |nteractive Development Environments will also typically have practical
debugging options.

Debugging

Native debugger

* |n notebooks, we can debug using the %debug command.

* Jo set a breakpoint, use the pdb package

import numpy as np

import pdb

def return dimension (array) :
pdb.set trace()

return array.shape ()
print (return dimension(np.array([[1l, 21, [3, 4],

* Jo step the code line by line, enter n.
 For more commands use h.

* VS Code has a visual implementation of this

Getting help

Obviously: google it

Stack overflow: make sure its a good question!

 Post a minimum working example

e guides you to the core of the error and serves for others to replicate your error

* more time-consuming, but during this process you might actually find the bug yourself!
Look at the documentation

e Jypically not economist friendly, but computer science friendly

* Jake a deep breath and go over it slowly

LLMs and Github Co-Pilot

General Programming Advice

Some coding advice

« Stanford is one of the best places in the world to learn Computer Science tools.
 If interested, leverage that!
* Use problem sets to try out new things and learn new things.
* |f you already know how package X works, try out package Y.
* |If you are an expert in R, try doing a problem set in Python (or Julial).
* Preferably, pick those problem sets which you think will be easier for you.
* There are many ways you can code the same output, so | always start with whatever is easier
* |f | need to optimize, | will do it later (knowing what the correct output should be)

 Learn to read error messages

Some coding advice

Coding classes in Stanford

« CS106A - Python and general programming principles

« CS106B - C++ and general programming principles

« CME 193 - Introduction to Scientific Python

¢ CS229 - Machine Learning (all done in Python)

o CS230 - Deep Learning (all done in Python)

e CS224N - Natural Language Processing (all done in Python)

