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• Familiarize all students with typical tools of Python


• Provide a clear basis so that students can further learn by themselves


• Level the playing field (so it may be slow for some)


• Make you aware of what is out there (for when you need more RAM or need to 100x faster)

What to expect from the programming camp:

What NOT to expect from it:
• Full proficiency (sorry!) - we are always learning =)

One important ground rule:

•Work together and help each other!



Tentative Outline
•Day 1:

•Why is coding important?

•Getting started with Python + basics 


•Day 2:

•Object oriented programming

•Useful libraries

•Debugging

•General programming advice, other languages and further resources


•Day 3:

•Servers, text editors and command line


•Day 4:

•Parallel + GPU computing

•AI and Coding




Data usage has increased in Economics (Angrist et al 2017, AER PP)



Even among theorists!!! (Akbarpour, Malladi and Saberi (2020))



Even among theorists!!!



• Popular! (most popular language according to many rankings)


• Big community


• Free and open source


• General purpose: “second best language for everything”


• For economists: more uses outside macro problem sets!

Why Python?



Why Python?



Getting started with Python



Setting up Python in your computer
• You don’t have to do this now!


• For programming camp, we will use Google Colab:


• https://colab.research.google.com/


• To have Python in your computer, you can either:


• Install the core Python package: https://www.python.org/downloads/


• Install the Anaconda distribution: https://www.anaconda.com/products/enterprise


• Anaconda comes with Python + some extra Pythonic bells and whistles.


• Setting up overall workflow can be done in multiple ways and also a matter of personal taste. 


• I recommend that you set up and experiment with this before Fall quarter starts.


• Preferably during programming camp period so we can help you debug.

https://colab.research.google.com/
https://www.python.org/downloads/
https://www.anaconda.com/products/enterprise


Setting up
What I use, for reference (VS Code + Jupyter Extension)



Setting up
Google Colab

• https://colab.research.google.com/


• Create a new notebook


• Make sure you can run the following


• You can run new code by either


• Clicking the “play" button to the left of the cell


• Pressing shift + enter (or return in a Mac)


2+2 

https://colab.research.google.com/


Python Basics



Some basic syntax
Variables and Type

• Variables declaration in Python is done by


• Python automatically infers the type of a variable from the type of the value.


• Variables can change type over the course of a program execution.

variable = value



Some basic syntax
Variables and Type

variable = value

• Know your types!


• E.g. documentation of the absolute function in Python.


• Typical number types: integers and floats.


• Typical text: strings



Variables and Types

• Different types occupy different memory sizes

Some basic syntax



Variables and Types

• Functions operate differently on different types

Some basic syntax

import numpy as np 

array = np.array([1.0,2.0]) 
integer = 1 
another_array = 
np.array([1.0,2.0]) 
a_list = [1,2] 
print(array + integer) 
print(array + another_array) 
print(array + a_list) 
print(a_list + integer) 



Some basic syntax
Math operations
• Standard mathematical syntax, except for exponentiation.



Some basic syntax
Math operations
• Bitwise operations: and (&), or (|)


• Operates element by element on bit representation of numbers


• e.g. 2 | 3 = 3


• 2 in bit is 10


• 3 in bit is 11


• Return = [1 or 1][0 or 1] = 11 = 3 in bit representation


• Conclusion: in practice, test multiple events, use and/or



Some basic syntax
Strings



Some basic syntax
Strings IMPORTANT: THE FIRST ELEMENT IS INDEXED BY 0!



Some basic syntax
Tuples
• A tuple is a sequence type, meaning it stores an ordered collection of objects


• Immutable, meaning it cannot be changed after creation


• Stores heterogeneous data


• Packing…


• Unpacking…


• Python understands the last expression as pow(3,2,1) = mod(3^2,1)



Some basic syntax
Lists
• A list is a mutable sequence type


       
      psets_completed = ['macro',1,2] 

• Special list methods include


• This is object-oriented programming!



Some basic syntax
Lists
• Consider


       
tuple_lists = (['list1'],['list2'])                                                                                   
tuple_lists[0].append('another_item') 

• Why were we able to change a tuple element?



Some basic syntax
Lists
• Consider


       
tuple_lists = (['list1'],['list2'])                                                                                   
tuple_lists[0].append('another_item') 

• Why were we able to change a tuple element?


• Tuples stores references to underlying objects.


• If the objects being referenced are mutable, they can still be changed.



Some basic syntax
A detour on assignment, copy and deep copies

• Assignments for sequence types in Python are done by reference.


• This means that assignments does not create copies, but only alias (a new 
name) for the same existing object.


• The following example illustrates this:

a = [1,2] 
b = a 
a[1] = 3 
print(a) 
print(b) 



Some basic syntax
A detour on assignment, copy and deep copies

• For soft copies, we can use the copy function from the copy module.
import copy 
a = [1,2] 
b = copy.copy(a) 
a[1] = 3 

• If the sequence types contain other sequence type, then we need deep copies
a = [1,['list element 1','list element 2']] 
b = copy.deepcopy(a) 
a[1][0] = 'new value' 



Some basic syntax
Dictionaries and Range

• Other sequence flavor types (dictionaries are actually Mapping types)


• Dictionaries provides key value pairs.

• Ranges represent a sequence of numbers typically used in for loops.

dic = {'key_1' : 'value_1', 'key_2' : 3, 'key_3' : ['a list']} 

a_range_type = range(10) 



Some basic syntax
Loops
• Python has both for and while loops.


• The beginning and end of loop blocks are defined with identation!


• Example


• The same is true for if statements

for i in range(10): 
    print(i) 

a_condition = True 
if a_condition: 
    print('a_condition is True') 
else: 
    print('a_condition is False') 



Some basic syntax
Loops + Lists = List Comprehension

• List comprehension is a nice syntactic sugar to create objects iteratively in 
lists.


• Example:


• A syntax also to write loops more concisely


• not necessarily preferable though
fibonacci_list = [] 
[fibonacci_list.append(0) if i == 0 else fibonacci_list.append(1) if i == 1 else 
fibonacci_list.append(fibonacci_list[i-1] + fibonacci_list[i-2]) for i in range(10)] 
print(fibonacci_list) 

even_numbers_list = [i for i in range(10) if i % 2 == 0] 



Some basic syntax
Functions

• As with loops, a function definition ends according to indentation.

def f(x1, x2): 
    # Do stuff and save to x3 
    return x3 

• Function arguments can be positional or keyword and accepts default values.



Some basic syntax
Functions

• Functions can also take a varying number of arguments (variadic arguments)

def f_many_args(*objects): 
    print(objects) 

f_many_args(1,2,3) 
f_many_args(*(1,2,3)) 
f_many_args((1,2,3)) 



Some basic syntax
Functions

• The first string inside a function body is taken to be its documentation string.
def f(x1, x2): 
    """ 
    Description: Does some things. 
    Arguments: 
    - x1 (int): The first x. 
    - x2 (int): The second x. 
    Returns: 
    - int: Integer representing the third x. 
    """ 
    # Does some things 
    return x3 

print(f.__doc__) 



Some basic syntax
Scoping

• Scoping refers to the rules that Python will follow to search for an object.


• Search goes from “inner to outwards”


• think about how you would search for your lost keys



Some basic syntax
Scoping

• Example


• What is the output of g(f)? 

def f(): 
      print(x) 

def g(foo): 
      x = 99 
      foo() 
      print(x) 

x = 1 
g(f) 



Some basic syntax
Scoping

• Example 


• What is the output of g(f)?

def f(): 
      print(x) 

def g(foo): 
      x = 99 
      def a_function_defined_inside_a_function(): 
          print(x) 
      foo() 
      print("below will be the function defined inside g") 
      a_function_defined_inside_a_function() 
      print(x) 

x = 1 
g(f) 



Some basic syntax
Scoping

• Example 


• What is the output of g(f)?


• Conclusion: a scope search begins in the environment the function is defined!

def f(): 
      print(x) 

def g(foo): 
      x = 99 
      def a_function_defined_inside_a_function(): 
          print(x) 
      foo() 
      print("below will be the function defined inside g") 
      a_function_defined_inside_a_function() 
      print(x) 

x = 1 
g(f) 



Some basic syntax
Scoping

• What happens in the following example?

x = 1 
def myfun(): 
    return x 
x = 10 
myfun() 



Some basic syntax
Scoping

• What happens in the following example?


• Conclusion: a function searches for a variable when it is called, not when it is defined

x = 1 
def myfun(): 
    return x 
x = 10 
myfun() 



Object-Oriented Programming



Programming Paradigms

• A way to classify programming languages based on their features.


• A language can be classified into multiple of these.


• The common paradigm terminology you may encounter are two:


• Functional programming -> R! (Remember maps)


• Objected-oriented programming (OOP) -> Python!


• Most languages nowadays blends all of these paradigms.


• Python is actually multi-paradigm.



Object-oriented Programming

• With OOP, data and functions are “bundled together” into 
objects.


• In Python, everything is an object, which consists of:


• A type


• An identity


• Data


• Methods



Object-oriented Programming

• High-level idea: create blueprint


• E.g. create a blueprint for creating a house.


• houses are different, but they share many similarities


• this makes it easy to build many houses.


• In economics: blueprint for heterogeneous agents



Object-oriented Programming

• We have already seen an instance of OOP in a previous example


• __doc__ is a method of a function f (which is itself an object).


• underscores have no syntactical meaning


• just there to avoid method names clashes

print(f.__doc__) 



Object-oriented Programming

• With OOP we can create our own objects and write methods for it!


• Let’s write a class that is a class that defines a consumer.
class Consumer: 

    def __init__(self, g, wealth): 
        self.risk_aversion = g 
        self.util = 0.0 
        self.wealth = wealth 

    def eat(self, c): 
        # consumer's utility from consuming c 
        self.util += c**(1-self.risk_aversion)/(1-self.risk_aversion) 
        self.wealth -= c 



Object-oriented Programming
Subclasses

• We can also define a subclass.


• Idea: create specialization of objects with specific methods


• But still adheres still accepts the parents’ methods


• In computer-science lingo, this is called inheritance


• Think about a class for a motorized vehicle


• we could then build a subclass for cars


• For our consumer class case, some consumers may have a borrowing constraint



Object-oriented Programming
Subclasses

# Parent Class 
class Consumer: 

    def __init__(self, g, wealth): 
        self.risk_aversion = g 
        self.util = 0.0 
        self.wealth = wealth 

    def eat(self, c): 
        # consumer's utility from consuming c 
        self.util += c**(1-self.risk_aversion)/(1-self.risk_aversion) 
        self.wealth -= c 

# Consumer subclass 
class Consumer_Constrained(Consumer): 

    def __init__(self, g, wealth): 
        super(Consumer_Constrained, self).__init__(g, 
                wealth) 
        # super().__init__(g, wealth) # alternative syntax 
        self.loan = 0 

    def borrow(self, l): 
        # consumer takes a loan l 
        self.loan += l 
        self.wealth += l 

consumer1 = Consumer_Constrained(2, 10.0) 
consumer1.eat(2) 
print(consumer1.util) 
print(consumer1.wealth) 
consumer1.borrow(5) 
print(consumer1.wealth) 



Object-oriented Programming
• Some packages require you to write classes to leverage on its own methods.


• More involved example from PyTorch (deep learning framework).


• This is PyTorch first example in its tutorial.

This is a subclass example: super() tells 
Python for the class NeuralNetwork to 
inherit its methods from the base class 

(nn.Module) 

import torch.nn as nn 

class NeuralNetwork(nn.Module): 
    def __init__(self): 
        super(NeuralNetwork, self).__init__() 
        self.flatten = nn.Flatten() 
        self.linear_relu_stack = nn.Sequential( 
            nn.Linear(28*28, 512), 
            nn.ReLU(), 
            nn.Linear(512, 512), 
            nn.ReLU(), 
            nn.Linear(512, 10), 
        ) 



Useful libraries



Useful libraries

• NumPy


• Matplotlib


• SciPy


• Pandas


• Sympy


• Numba



Useful libraries
Installing new packages

• If you need to install a new package, you should run either (depends on how you installed 
Python)


• In Python, you can also create virtual environments, which are essentially “local workspaces” 
which already contains the packages required (and its versions) to run the programs you desire.


• These are essentially used to ensure consistency of versions of packages consistent when, 
for example, running programs across different different computers.


• To create an environment                                     or


• We won’t do any of this, but its useful to know it exists.

pip install numpy conda install numpy 

conda create —name <environment-name> 

python -m venv <environment-directory> 



Useful libraries
Numpy

• A library for computations with array (think “Matlab in Python”)


• Native functions in NumPy are very efficient (written in C).


• You will probably need it for virtually any use of Python for your problem sets/
projects.

# Running a regression in numpy 

import numpy as any_alias_for_numpy 

x = any_alias_for_numpy.random.randn(100,1) 
e = any_alias_for_numpy.random.randn(100,1) 

y = 0.7*x + e 

beta_hat = any_alias_for_numpy.linalg.inv(x.T @ x ) @ x.T @ y 



Useful libraries
Numpy

• For the alias, people typically use


• Numpy allows you to the array operations you would expect.


• If you don’t find a method/function that does what you want then you are 
probably trying to do it the wrong way.


• A few examples:

import numpy as np 

import numpy as np 
data = np.array([[1, 2], [3, 4], [5, 6]]) # creates a 3x2 matrix 
print(data[0,1]) # accesses (1,2) element of array 
print(data[0,0:2]) # slicing arrays 
print(data.max()) # maximum element of array 
print(data.max(axis = 0)) # maximum element of array over rows 
print(data.reshape(2,3)) # reshaping 



Useful libraries
Plotting

• The main plotting library is Matplotlib.


• For basic usage, it is typically loaded as


• Plotting a function on a grid
import matplotlib.pyplot as plt 

import matplotlib.pyplot as plt 
import numpy as np 

# make data 
x = np.linspace(0, 10, 100) 
y = 4 + 2 * np.sin(2 * x) 



Useful libraries
Plotting

• For different plot types, use a different plotting method.


• Plotting our regression data as a scatter 

import matplotlib.pyplot as plt 
plt.scatter(x,y) 
plt.show() 



Useful libraries
Plotting

• The plot function has many arguments for customatization.

import matplotlib.pyplot as plt 
import numpy as np 

# make data 
x = np.linspace(0, 10, 100) 
y = 4 + 2 * np.sin(2 * x) 

plt.plot(x,y,color = 'red')  
plt.show() 



Useful libraries
Plotting

• You can customize axis, legends, titles, etc… with methods from the PyPlot 
object

import matplotlib.pyplot as plt 
import numpy as np 

# make data 
x = np.linspace(0, 10, 100) 
y = 4 + 2 * np.sin(2 * x) 

plt.axes(xlabel = 'the x grid', ylabel = 'the value of the function') 
plt.plot(x,y,color = 'red', label = 'a transformation of the sign function')  
plt.legend() 
plt.show() 



Useful libraries
Plotting

• You can create subplots with the subplots method.

import matplotlib.pyplot as plt 
import numpy as np 

# Some example data to display 
x = np.linspace(0, 2 * np.pi, 400) 
y = np.sin(x ** 2) 

fig, (ax1, ax2) = plt.subplots(2) 
fig.suptitle('Vertically stacked subplots') 
ax1.plot(x, y) 
ax2.plot(x, -y) 



Useful libraries
Plotting

• You can also use a style file

print(plt.style.available) 
plt.style.use('fivethirtyeight') 



Useful libraries
Plotting

• You can even create your own style file.


• Place it in ~/.matplotlib/stylelib/
# Figure Properties 

figure.figsize: 7,7 
font.family: Helvetica 
font.size: 20 
axes.linewidth: 2 
axes.labelpad: 10 
axes.labelsize: 24 
text.usetex: True 

# Shades of grey/black 
axes.prop_cycle: cycler('color',['C5C9C7','929591','808080','000000']) 



Useful libraries
SciPy

• Provides algorithms for optimization, integration, interpolation, differential 
equations, etc…


• An optimization example:

max
c0,c1

log(c0) + 2log(c1) s.t. p0c0 + p1c1 = w



Useful libraries
SciPy

• An optimization example (note syntax will depend on the method you pick!):
from scipy.optimize import LinearConstraint, Bounds, minimize 
import numpy as np 
     
wealth = 10.0 
p_c0 = 1.0 
p_c1 = 1.5 
bounds = Bounds([0.001,0.001],[np.inf, np.inf]) 
linear_constraint = LinearConstraint([[p_c0, p_c1]], [0.001], [wealth]) 

def utility(c): 
    return -1*(np.log(c[0]) + 2*np.log(c[1])) 

x0 = np.array([0.5, 0.5]) 
res = minimize(utility, x0, method='trust-constr', constraints=[linear_constraint], 
               options={'verbose': 1}, bounds=bounds) 



Useful libraries
Pandas (Dataframes)

• The main package to manipulate data in Python is pandas.


• The main object there is also a dataframe, which is the typical datatable with 
rows being observations and columns being different variables.


• In Python we typically do not use piping* syntax (as e.g. in R/tidyverse), but 
we can leverage dataframe methods.


• Download raw data for Apple, Microsoft, IBM and Uber balance sheet data.

*although possible, see pipe package.

https://github.com/marcelosena/programming_camp/blob/main/wrds_data.txt

https://github.com/marcelosena/programming_camp/blob/main/wrds_data.txt


Useful libraries
Pandas (Dataframes)

• Manipulating raw data:
# raw data manipulation 
import pandas as pd 
import matplotlib.pyplot as plt 

data = pd.read_csv(‘../Data/wrds_data.txt', sep = "\t") 

# quick look at the data 
print(data.head()) 
# transform datadate variable into proper date 
data['datadate'] = pd.to_datetime(data['datadate'], format = '%Y%m%d') 
# make datadate the index 
data = data.set_index('datadate') 
## view available columns 
print(data.columns) 
# dropping add1 variable 
data = data.drop('add1', axis = 1) 
# dropping last observation 
data = data.drop(index=pd.to_datetime('2020-06-30')) 
# pandas dataframes have a plot method too 
# grouping by companies and plotting total assets 
data.groupby('conml')['actq'].plot(legend = True) 
plt.show() 



Useful libraries
Pandas (Dataframes)

• Other useful panda methods

data.merge(...) # merges data 
data.pivot(...) # reshapes data 
data.iloc[0,:] # selects the first row 
data.iloc[:,0] # selects the first column 
data.loc[:,'col1'] # selects the column with name 'col1' 
data.shift(1) # shifts the data by one row (lags) 
data.dropna() # drops all rows with missing values 



Useful libraries
SymPy

• SymPy is a computer algebra package for Python.


• Useful for tedious algebra or double checking own derivations.
from sympy import * 

# declaring symbolic variables 
c = symbols('c', real = True) 
v = Function('v')(c) 
param = symbols('\gamma', real = True, positive = True) 

obj = log(c) + param*v 
c_foc = diff(obj, c) 
c_sol = solve(c_foc, c)[0] 
print(c_sol) 



Useful libraries
Numba
• Numba is a package that allows “free” code speedup


• We will do this more in-depth in Econ 210


• Example:
import numba 
import random 
import time 

start = time.time() 
def monte_carlo_pi(nsamples): 
    acc = 0 
    for i in range(nsamples): 
        x = random.random() 
        y = random.random() 
        if (x ** 2 + y ** 2) < 1.0: 
            acc += 1 
    return 4.0 * acc / nsamples 

print(monte_carlo_pi(10_000_000)) 
end = time.time() 
print(end - start) 



Useful libraries
Numba
• Speeding up: @numba.jit() is called a function decorator


• Recommend setting @numba.jit(nopython = True) or the shorthand @numba.njit()


• Guarantees weakly faster code (modulo debugging)

start = time.time() 
@numba.jit() 
def monte_carlo_pi(nsamples): 
    acc = 0 
    for i in range(nsamples): 
        x = random.random() 
        y = random.random() 
        if (x ** 2 + y ** 2) < 1.0: 
            acc += 1 
    return 4.0 * acc / nsamples 

print(monte_carlo_pi(10_000_000)) 
end = time.time() 
print(end - start) 



Useful libraries
Numba
• Once a function is compiled, global variables are “hard-coded” into function


• This will make functions seem to behave differently from Python’s standard 
scoping rules import numba 

import numpy as np 

x = 1 
def f(): 
    print(x) 

@numba.njit() 
def numba_f(): 
    print(x) 
numba_f() 
f() 

x = 10 
f() 
numba_f() 



Detour: function decorators
• A function decorator would be the coding equivalent of a functional/operator 

(a machine that takes a function as an argument)


• The decorator above will automatically make a function time itself

import time 
import math 

def function_timer(func): 
    #the inner1 function takes arguments through *args and **kwargs 

    def inner1(*args, **kwargs): 
        # storing time before function execution 
        begin = time.time() 

        func(*args, **kwargs) 

        # storing time after function execution 
        end = time.time() 
        print("Total time to run " + func.__name__ + " function: " + str(end - begin)) 

    return inner1 

@function_timer 
def compute_model(num): 
    print("Model computed succesfully!") 

# calling the function. 
compute_model(10) 



Useful libraries
Other libraries/Python related languages

• scikit-learn: machine learning + other statistical techniques


• PyTorch: deep learning


• Keras: deep learning


• Tensorflow: deep learning


• Mojo


• Jax



Debugging



Debugging

• Debugging may also involve some personal taste.


• Printing objects and running a code may work, but it is not the efficient way.


• Python has a native debugger which allows you to pause code at desired 
points of execution.


• You can then inspect your variables at that point of the execution or run the 
code line by line.


• Interactive Development Environments will also typically have practical 
debugging options.



Debugging
Native debugger

• In notebooks, we can debug using the %debug command.


• To set a breakpoint, use the pdb package


• To step the code line by line, enter n.


• For more commands use h.


• VS Code has a visual implementation of this

import numpy as np 
import pdb 
def return_dimension(array): 
    pdb.set_trace() 
    # this will give an error because shape is a property of the array, not a method 
    return array.shape() 
print(return_dimension(np.array([[1, 2], [3, 4], [5, 6]]))) 



Getting help
• Obviously: google it


• Stack overflow: make sure its a good question!


• Post a minimum working example


• guides you to the core of the error and serves for others to replicate your error


• more time-consuming, but during this process you might actually find the bug yourself!


• Look at the documentation


• Typically not economist friendly, but computer science friendly


• Take a deep breath and go over it slowly


• LLMs and Github Co-Pilot



General Programming Advice



Some coding advice
• Stanford is one of the best places in the world to learn Computer Science tools.


• If interested, leverage that!


• Use problem sets to try out new things and learn new things.


• If you already know how package X works, try out package Y.


• If you are an expert in R, try doing a problem set in Python (or Julia!).


• Preferably, pick those problem sets which you think will be easier for you.


• There are many ways you can code the same output, so I always start with whatever is easier


• If I need to optimize, I will do it later (knowing what the correct output should be)


• Learn to read error messages



Some coding advice
Coding classes in Stanford

• CS106A - Python and general programming principles


• CS106B - C++ and general programming principles


• CME 193 - Introduction to Scientific Python


• CS229 - Machine Learning (all done in Python)


• CS230 - Deep Learning (all done in Python)


• CS224N - Natural Language Processing (all done in Python)


