
Marcelo Sena, Summer 2023
I am grateful to Parth Sarin, Ciaran Rogers, Diego Jimenez and Brian Higgins for sharing material.

Programming Camp
Summer 2023

• Familiarize all students with typical tools of Python

• Provide a clear basis so that students can further learn by themselves

• Level the playing field (so it may be slow for some)

• Make you aware of what is out there (for when you need more RAM or need to 100x faster)

What to expect from the programming camp:

What NOT to expect from it:
• Full proficiency (sorry!) - we are always learning =)

One important ground rule:

•Work together and help each other!

Tentative Outline
•Day 1:

•Why is coding important?

•Getting started with Python + basics

•Day 2:

•Object oriented programming

•Useful libraries

•Debugging

•General programming advice, other languages and further resources

•Day 3:

•Servers, text editors and command line

•Day 4:

•Parallel + GPU computing

•AI and Coding

Data usage has increased in Economics (Angrist et al 2017, AER PP)

Even among theorists!!! (Akbarpour, Malladi and Saberi (2020))

Even among theorists!!!

• Popular! (most popular language according to many rankings)

• Big community

• Free and open source

• General purpose: “second best language for everything”

• For economists: more uses outside macro problem sets!

Why Python?

Why Python?

Getting started with Python

Setting up Python in your computer
• You don’t have to do this now!

• For programming camp, we will use Google Colab:

• https://colab.research.google.com/

• To have Python in your computer, you can either:

• Install the core Python package: https://www.python.org/downloads/

• Install the Anaconda distribution: https://www.anaconda.com/products/enterprise

• Anaconda comes with Python + some extra Pythonic bells and whistles.

• Setting up overall workflow can be done in multiple ways and also a matter of personal taste.

• I recommend that you set up and experiment with this before Fall quarter starts.

• Preferably during programming camp period so we can help you debug.

https://colab.research.google.com/
https://www.python.org/downloads/
https://www.anaconda.com/products/enterprise

Setting up
What I use, for reference (VS Code + Jupyter Extension)

Setting up
Google Colab

• https://colab.research.google.com/

• Create a new notebook

• Make sure you can run the following

• You can run new code by either

• Clicking the “play" button to the left of the cell

• Pressing shift + enter (or return in a Mac)

2+2

https://colab.research.google.com/

Python Basics

Some basic syntax
Variables and Type

• Variables declaration in Python is done by

• Python automatically infers the type of a variable from the type of the value.

• Variables can change type over the course of a program execution.

variable = value

Some basic syntax
Variables and Type

variable = value

• Know your types!

• E.g. documentation of the absolute function in Python.

• Typical number types: integers and floats.

• Typical text: strings

Variables and Types

• Different types occupy different memory sizes

Some basic syntax

Variables and Types

• Functions operate differently on different types

Some basic syntax

import numpy as np

array = np.array([1.0,2.0])
integer = 1
another_array =
np.array([1.0,2.0])
a_list = [1,2]
print(array + integer)
print(array + another_array)
print(array + a_list)
print(a_list + integer)

Some basic syntax
Math operations
• Standard mathematical syntax, except for exponentiation.

Some basic syntax
Math operations
• Bitwise operations: and (&), or (|)

• Operates element by element on bit representation of numbers

• e.g. 2 | 3 = 3

• 2 in bit is 10

• 3 in bit is 11

• Return = [1 or 1][0 or 1] = 11 = 3 in bit representation

• Conclusion: in practice, test multiple events, use and/or

Some basic syntax
Strings

Some basic syntax
Strings IMPORTANT: THE FIRST ELEMENT IS INDEXED BY 0!

Some basic syntax
Tuples
• A tuple is a sequence type, meaning it stores an ordered collection of objects

• Immutable, meaning it cannot be changed after creation

• Stores heterogeneous data

• Packing…

• Unpacking…

• Python understands the last expression as pow(3,2,1) = mod(3^2,1)

Some basic syntax
Lists
• A list is a mutable sequence type

 psets_completed = ['macro',1,2]

• Special list methods include

• This is object-oriented programming!

Some basic syntax
Lists
• Consider

tuple_lists = (['list1'],['list2'])
tuple_lists[0].append('another_item')

• Why were we able to change a tuple element?

Some basic syntax
Lists
• Consider

tuple_lists = (['list1'],['list2'])
tuple_lists[0].append('another_item')

• Why were we able to change a tuple element?

• Tuples stores references to underlying objects.

• If the objects being referenced are mutable, they can still be changed.

Some basic syntax
A detour on assignment, copy and deep copies

• Assignments for sequence types in Python are done by reference.

• This means that assignments does not create copies, but only alias (a new
name) for the same existing object.

• The following example illustrates this:

a = [1,2]
b = a
a[1] = 3
print(a)
print(b)

Some basic syntax
A detour on assignment, copy and deep copies

• For soft copies, we can use the copy function from the copy module.
import copy
a = [1,2]
b = copy.copy(a)
a[1] = 3

• If the sequence types contain other sequence type, then we need deep copies
a = [1,['list element 1','list element 2']]
b = copy.deepcopy(a)
a[1][0] = 'new value'

Some basic syntax
Dictionaries and Range

• Other sequence flavor types (dictionaries are actually Mapping types)

• Dictionaries provides key value pairs.

• Ranges represent a sequence of numbers typically used in for loops.

dic = {'key_1' : 'value_1', 'key_2' : 3, 'key_3' : ['a list']}

a_range_type = range(10)

Some basic syntax
Loops
• Python has both for and while loops.

• The beginning and end of loop blocks are defined with identation!

• Example

• The same is true for if statements

for i in range(10):
 print(i)

a_condition = True
if a_condition:
 print('a_condition is True')
else:
 print('a_condition is False')

Some basic syntax
Loops + Lists = List Comprehension

• List comprehension is a nice syntactic sugar to create objects iteratively in
lists.

• Example:

• A syntax also to write loops more concisely

• not necessarily preferable though
fibonacci_list = []
[fibonacci_list.append(0) if i == 0 else fibonacci_list.append(1) if i == 1 else
fibonacci_list.append(fibonacci_list[i-1] + fibonacci_list[i-2]) for i in range(10)]
print(fibonacci_list)

even_numbers_list = [i for i in range(10) if i % 2 == 0]

Some basic syntax
Functions

• As with loops, a function definition ends according to indentation.

def f(x1, x2):
 # Do stuff and save to x3
 return x3

• Function arguments can be positional or keyword and accepts default values.

Some basic syntax
Functions

• Functions can also take a varying number of arguments (variadic arguments)

def f_many_args(*objects):
 print(objects)

f_many_args(1,2,3)
f_many_args(*(1,2,3))
f_many_args((1,2,3))

Some basic syntax
Functions

• The first string inside a function body is taken to be its documentation string.
def f(x1, x2):
 """
 Description: Does some things.
 Arguments:
 - x1 (int): The first x.
 - x2 (int): The second x.
 Returns:
 - int: Integer representing the third x.
 """
 # Does some things
 return x3

print(f.__doc__)

Some basic syntax
Scoping

• Scoping refers to the rules that Python will follow to search for an object.

• Search goes from “inner to outwards”

• think about how you would search for your lost keys

Some basic syntax
Scoping

• Example

• What is the output of g(f)?

def f():
 print(x)

def g(foo):
 x = 99
 foo()
 print(x)

x = 1
g(f)

Some basic syntax
Scoping

• Example

• What is the output of g(f)?

def f():
 print(x)

def g(foo):
 x = 99
 def a_function_defined_inside_a_function():
 print(x)
 foo()
 print("below will be the function defined inside g")
 a_function_defined_inside_a_function()
 print(x)

x = 1
g(f)

Some basic syntax
Scoping

• Example

• What is the output of g(f)?

• Conclusion: a scope search begins in the environment the function is defined!

def f():
 print(x)

def g(foo):
 x = 99
 def a_function_defined_inside_a_function():
 print(x)
 foo()
 print("below will be the function defined inside g")
 a_function_defined_inside_a_function()
 print(x)

x = 1
g(f)

Some basic syntax
Scoping

• What happens in the following example?

x = 1
def myfun():
 return x
x = 10
myfun()

Some basic syntax
Scoping

• What happens in the following example?

• Conclusion: a function searches for a variable when it is called, not when it is defined

x = 1
def myfun():
 return x
x = 10
myfun()

Object-Oriented Programming

Programming Paradigms

• A way to classify programming languages based on their features.

• A language can be classified into multiple of these.

• The common paradigm terminology you may encounter are two:

• Functional programming -> R! (Remember maps)

• Objected-oriented programming (OOP) -> Python!

• Most languages nowadays blends all of these paradigms.

• Python is actually multi-paradigm.

Object-oriented Programming

• With OOP, data and functions are “bundled together” into
objects.

• In Python, everything is an object, which consists of:

• A type

• An identity

• Data

• Methods

Object-oriented Programming

• High-level idea: create blueprint

• E.g. create a blueprint for creating a house.

• houses are different, but they share many similarities

• this makes it easy to build many houses.

• In economics: blueprint for heterogeneous agents

Object-oriented Programming

• We have already seen an instance of OOP in a previous example

• __doc__ is a method of a function f (which is itself an object).

• underscores have no syntactical meaning

• just there to avoid method names clashes

print(f.__doc__)

Object-oriented Programming

• With OOP we can create our own objects and write methods for it!

• Let’s write a class that is a class that defines a consumer.
class Consumer:

 def __init__(self, g, wealth):
 self.risk_aversion = g
 self.util = 0.0
 self.wealth = wealth

 def eat(self, c):
 # consumer's utility from consuming c
 self.util += c**(1-self.risk_aversion)/(1-self.risk_aversion)
 self.wealth -= c

Object-oriented Programming
Subclasses

• We can also define a subclass.

• Idea: create specialization of objects with specific methods

• But still adheres still accepts the parents’ methods

• In computer-science lingo, this is called inheritance

• Think about a class for a motorized vehicle

• we could then build a subclass for cars

• For our consumer class case, some consumers may have a borrowing constraint

Object-oriented Programming
Subclasses

Parent Class
class Consumer:

 def __init__(self, g, wealth):
 self.risk_aversion = g
 self.util = 0.0
 self.wealth = wealth

 def eat(self, c):
 # consumer's utility from consuming c
 self.util += c**(1-self.risk_aversion)/(1-self.risk_aversion)
 self.wealth -= c

Consumer subclass
class Consumer_Constrained(Consumer):

 def __init__(self, g, wealth):
 super(Consumer_Constrained, self).__init__(g,
 wealth)
 # super().__init__(g, wealth) # alternative syntax
 self.loan = 0

 def borrow(self, l):
 # consumer takes a loan l
 self.loan += l
 self.wealth += l

consumer1 = Consumer_Constrained(2, 10.0)
consumer1.eat(2)
print(consumer1.util)
print(consumer1.wealth)
consumer1.borrow(5)
print(consumer1.wealth)

Object-oriented Programming
• Some packages require you to write classes to leverage on its own methods.

• More involved example from PyTorch (deep learning framework).

• This is PyTorch first example in its tutorial.

This is a subclass example: super() tells
Python for the class NeuralNetwork to
inherit its methods from the base class

(nn.Module)

import torch.nn as nn

class NeuralNetwork(nn.Module):
 def __init__(self):
 super(NeuralNetwork, self).__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28*28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10),
)

Useful libraries

Useful libraries

• NumPy

• Matplotlib

• SciPy

• Pandas

• Sympy

• Numba

Useful libraries
Installing new packages

• If you need to install a new package, you should run either (depends on how you installed
Python)

• In Python, you can also create virtual environments, which are essentially “local workspaces”
which already contains the packages required (and its versions) to run the programs you desire.

• These are essentially used to ensure consistency of versions of packages consistent when,
for example, running programs across different different computers.

• To create an environment or

• We won’t do any of this, but its useful to know it exists.

pip install numpy conda install numpy

conda create —name <environment-name>

python -m venv <environment-directory>

Useful libraries
Numpy

• A library for computations with array (think “Matlab in Python”)

• Native functions in NumPy are very efficient (written in C).

• You will probably need it for virtually any use of Python for your problem sets/
projects.

Running a regression in numpy

import numpy as any_alias_for_numpy

x = any_alias_for_numpy.random.randn(100,1)
e = any_alias_for_numpy.random.randn(100,1)

y = 0.7*x + e

beta_hat = any_alias_for_numpy.linalg.inv(x.T @ x) @ x.T @ y

Useful libraries
Numpy

• For the alias, people typically use

• Numpy allows you to the array operations you would expect.

• If you don’t find a method/function that does what you want then you are
probably trying to do it the wrong way.

• A few examples:

import numpy as np

import numpy as np
data = np.array([[1, 2], [3, 4], [5, 6]]) # creates a 3x2 matrix
print(data[0,1]) # accesses (1,2) element of array
print(data[0,0:2]) # slicing arrays
print(data.max()) # maximum element of array
print(data.max(axis = 0)) # maximum element of array over rows
print(data.reshape(2,3)) # reshaping

Useful libraries
Plotting

• The main plotting library is Matplotlib.

• For basic usage, it is typically loaded as

• Plotting a function on a grid
import matplotlib.pyplot as plt

import matplotlib.pyplot as plt
import numpy as np

make data
x = np.linspace(0, 10, 100)
y = 4 + 2 * np.sin(2 * x)

Useful libraries
Plotting

• For different plot types, use a different plotting method.

• Plotting our regression data as a scatter

import matplotlib.pyplot as plt
plt.scatter(x,y)
plt.show()

Useful libraries
Plotting

• The plot function has many arguments for customatization.

import matplotlib.pyplot as plt
import numpy as np

make data
x = np.linspace(0, 10, 100)
y = 4 + 2 * np.sin(2 * x)

plt.plot(x,y,color = 'red')
plt.show()

Useful libraries
Plotting

• You can customize axis, legends, titles, etc… with methods from the PyPlot
object

import matplotlib.pyplot as plt
import numpy as np

make data
x = np.linspace(0, 10, 100)
y = 4 + 2 * np.sin(2 * x)

plt.axes(xlabel = 'the x grid', ylabel = 'the value of the function')
plt.plot(x,y,color = 'red', label = 'a transformation of the sign function')
plt.legend()
plt.show()

Useful libraries
Plotting

• You can create subplots with the subplots method.

import matplotlib.pyplot as plt
import numpy as np

Some example data to display
x = np.linspace(0, 2 * np.pi, 400)
y = np.sin(x ** 2)

fig, (ax1, ax2) = plt.subplots(2)
fig.suptitle('Vertically stacked subplots')
ax1.plot(x, y)
ax2.plot(x, -y)

Useful libraries
Plotting

• You can also use a style file

print(plt.style.available)
plt.style.use('fivethirtyeight')

Useful libraries
Plotting

• You can even create your own style file.

• Place it in ~/.matplotlib/stylelib/
Figure Properties

figure.figsize: 7,7
font.family: Helvetica
font.size: 20
axes.linewidth: 2
axes.labelpad: 10
axes.labelsize: 24
text.usetex: True

Shades of grey/black
axes.prop_cycle: cycler('color',['C5C9C7','929591','808080','000000'])

Useful libraries
SciPy

• Provides algorithms for optimization, integration, interpolation, differential
equations, etc…

• An optimization example:

max
c0,c1

log(c0) + 2log(c1) s.t. p0c0 + p1c1 = w

Useful libraries
SciPy

• An optimization example (note syntax will depend on the method you pick!):
from scipy.optimize import LinearConstraint, Bounds, minimize
import numpy as np

wealth = 10.0
p_c0 = 1.0
p_c1 = 1.5
bounds = Bounds([0.001,0.001],[np.inf, np.inf])
linear_constraint = LinearConstraint([[p_c0, p_c1]], [0.001], [wealth])

def utility(c):
 return -1*(np.log(c[0]) + 2*np.log(c[1]))

x0 = np.array([0.5, 0.5])
res = minimize(utility, x0, method='trust-constr', constraints=[linear_constraint],
 options={'verbose': 1}, bounds=bounds)

Useful libraries
Pandas (Dataframes)

• The main package to manipulate data in Python is pandas.

• The main object there is also a dataframe, which is the typical datatable with
rows being observations and columns being different variables.

• In Python we typically do not use piping* syntax (as e.g. in R/tidyverse), but
we can leverage dataframe methods.

• Download raw data for Apple, Microsoft, IBM and Uber balance sheet data.

*although possible, see pipe package.

https://github.com/marcelosena/programming_camp/blob/main/wrds_data.txt

https://github.com/marcelosena/programming_camp/blob/main/wrds_data.txt

Useful libraries
Pandas (Dataframes)

• Manipulating raw data:
raw data manipulation
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv(‘../Data/wrds_data.txt', sep = "\t")

quick look at the data
print(data.head())
transform datadate variable into proper date
data['datadate'] = pd.to_datetime(data['datadate'], format = '%Y%m%d')
make datadate the index
data = data.set_index('datadate')
view available columns
print(data.columns)
dropping add1 variable
data = data.drop('add1', axis = 1)
dropping last observation
data = data.drop(index=pd.to_datetime('2020-06-30'))
pandas dataframes have a plot method too
grouping by companies and plotting total assets
data.groupby('conml')['actq'].plot(legend = True)
plt.show()

Useful libraries
Pandas (Dataframes)

• Other useful panda methods

data.merge(...) # merges data
data.pivot(...) # reshapes data
data.iloc[0,:] # selects the first row
data.iloc[:,0] # selects the first column
data.loc[:,'col1'] # selects the column with name 'col1'
data.shift(1) # shifts the data by one row (lags)
data.dropna() # drops all rows with missing values

Useful libraries
SymPy

• SymPy is a computer algebra package for Python.

• Useful for tedious algebra or double checking own derivations.
from sympy import *

declaring symbolic variables
c = symbols('c', real = True)
v = Function('v')(c)
param = symbols('\gamma', real = True, positive = True)

obj = log(c) + param*v
c_foc = diff(obj, c)
c_sol = solve(c_foc, c)[0]
print(c_sol)

Useful libraries
Numba
• Numba is a package that allows “free” code speedup

• We will do this more in-depth in Econ 210

• Example:
import numba
import random
import time

start = time.time()
def monte_carlo_pi(nsamples):
 acc = 0
 for i in range(nsamples):
 x = random.random()
 y = random.random()
 if (x ** 2 + y ** 2) < 1.0:
 acc += 1
 return 4.0 * acc / nsamples

print(monte_carlo_pi(10_000_000))
end = time.time()
print(end - start)

Useful libraries
Numba
• Speeding up: @numba.jit() is called a function decorator

• Recommend setting @numba.jit(nopython = True) or the shorthand @numba.njit()

• Guarantees weakly faster code (modulo debugging)

start = time.time()
@numba.jit()
def monte_carlo_pi(nsamples):
 acc = 0
 for i in range(nsamples):
 x = random.random()
 y = random.random()
 if (x ** 2 + y ** 2) < 1.0:
 acc += 1
 return 4.0 * acc / nsamples

print(monte_carlo_pi(10_000_000))
end = time.time()
print(end - start)

Useful libraries
Numba
• Once a function is compiled, global variables are “hard-coded” into function

• This will make functions seem to behave differently from Python’s standard
scoping rules import numba

import numpy as np

x = 1
def f():
 print(x)

@numba.njit()
def numba_f():
 print(x)
numba_f()
f()

x = 10
f()
numba_f()

Detour: function decorators
• A function decorator would be the coding equivalent of a functional/operator

(a machine that takes a function as an argument)

• The decorator above will automatically make a function time itself

import time
import math

def function_timer(func):
 #the inner1 function takes arguments through *args and **kwargs

 def inner1(*args, **kwargs):
 # storing time before function execution
 begin = time.time()

 func(*args, **kwargs)

 # storing time after function execution
 end = time.time()
 print("Total time to run " + func.__name__ + " function: " + str(end - begin))

 return inner1

@function_timer
def compute_model(num):
 print("Model computed succesfully!")

calling the function.
compute_model(10)

Useful libraries
Other libraries/Python related languages

• scikit-learn: machine learning + other statistical techniques

• PyTorch: deep learning

• Keras: deep learning

• Tensorflow: deep learning

• Mojo

• Jax

Debugging

Debugging

• Debugging may also involve some personal taste.

• Printing objects and running a code may work, but it is not the efficient way.

• Python has a native debugger which allows you to pause code at desired
points of execution.

• You can then inspect your variables at that point of the execution or run the
code line by line.

• Interactive Development Environments will also typically have practical
debugging options.

Debugging
Native debugger

• In notebooks, we can debug using the %debug command.

• To set a breakpoint, use the pdb package

• To step the code line by line, enter n.

• For more commands use h.

• VS Code has a visual implementation of this

import numpy as np
import pdb
def return_dimension(array):
 pdb.set_trace()
 # this will give an error because shape is a property of the array, not a method
 return array.shape()
print(return_dimension(np.array([[1, 2], [3, 4], [5, 6]])))

Getting help
• Obviously: google it

• Stack overflow: make sure its a good question!

• Post a minimum working example

• guides you to the core of the error and serves for others to replicate your error

• more time-consuming, but during this process you might actually find the bug yourself!

• Look at the documentation

• Typically not economist friendly, but computer science friendly

• Take a deep breath and go over it slowly

• LLMs and Github Co-Pilot

General Programming Advice

Some coding advice
• Stanford is one of the best places in the world to learn Computer Science tools.

• If interested, leverage that!

• Use problem sets to try out new things and learn new things.

• If you already know how package X works, try out package Y.

• If you are an expert in R, try doing a problem set in Python (or Julia!).

• Preferably, pick those problem sets which you think will be easier for you.

• There are many ways you can code the same output, so I always start with whatever is easier

• If I need to optimize, I will do it later (knowing what the correct output should be)

• Learn to read error messages

Some coding advice
Coding classes in Stanford

• CS106A - Python and general programming principles

• CS106B - C++ and general programming principles

• CME 193 - Introduction to Scientific Python

• CS229 - Machine Learning (all done in Python)

• CS230 - Deep Learning (all done in Python)

• CS224N - Natural Language Processing (all done in Python)

