Programming Camp - High Performance Computing

Marcelo Sena

This version: September 23, 2024

Thanks to Brian Higgins, Ciaran Rogers and Diego Jimenez for sharing material.

Presentation outline

1. High Performance Computing

2. Parallel Computing

3. Al, LLMs and Coding

1| High Performance Computing

Why do we need high performance

1 Quantitative, data-driven economic models are computationally complex
- Finding equilibrium involves solving individual behavior and then iterating for many prices until markets clear;
- Estimation requires solving model with many parameters guesses;
- Games with many players; industries with strategic behavior;
- Auctions with many goods;
- Migration with many cities;

2 Big data can easily overwhelm our laptops

- e.g. product level databases
- e.g. credit card transaction data

Why do we need high performance

1 Quantitative, data-driven economic models are computationally complex
- Finding equilibrium involves solving individual behavior and then iterating for many prices until markets clear;
- Estimation requires solving model with many parameters guesses;
- Games with many players; industries with strategic behavior;
- Auctions with many goods;
- Migration with many cities;

2 Big data can easily overwhelm our laptops
- e.g. product level databases
- e.g. credit card transaction data

— A mix of hardware and software can push the boundary of what is feasible

- Servers, with CPUs, GPUs, big RAM;
- Parallel programming;
- Distributed computing (many computers)

- Today: Show you the basics, and highlight what’s out there

- Lots to learn from CS
- Machine learning tools — e.g. PyTorch & GPU — can be leveraged for scientific computing
- Worth investing at this point in PhD

GPUs are changing machine learning and computer science

NVIDIA share price

500 0.82USD Jan 22,1999

400

300

200

100

]

1| High Performance Computing

1.1 University Clusters vs. Paid Services

What type of computer cluster should you use?

- Paid services include Microsoft Azure, Amazon Web Services (AWS) and Google Cloud Platform.

Monetary cost

Waiting times

Ease of use

Paid Services

University Cluster

[X] Expensive, often paid by the hour

[v] Instantly available

[v] Low set up costs (e.g., turning on a
computer + installing software)

[v/] Free to students and faculty

[X] Access often involves queues and
waiting times

[X] Complicated to understand and use
(high fixed costs)

1 |High Performance Computing

1.2 Using Stanford Servers

Some Terminology

- Computer cluster:

Collection of separate computer servers, called nodes, which are connected via a fast interconnect.

Configuration allows many computers to work together.

- Nodes:
Individual computers designed to accomplish specific tasks (e.g., login nodes, computing nodes).

- Job Scheduler: (SLURM)
Software that organizes and assigns tasks to the computer cluster.
Provides a framework to start, execute and monitor jobs within the cluster.

5/ 28

List of Stanford Servers

1. Farmshare: rice (login node), wheat (big memory node), and oat (gpu node).

- Coursework, and non-sponsored research.
- Can only connect to rice, and access other nodes from there.

2. Sherlock

- Sponsored research. Need a faculty sponsor to get access to.
- Humanities and Sciences partition available hns.

- Connect to login nodes (low computing power) and schedule jobs in high performance nodes.

3. Other servers available tailored to other needs.
- GSB server: yen.

Using the terminal

- Connect through SecureCRT (Windows) or the terminal (Mac).

- Connecting to Stanford servers:

ssh StanfordID@rice.stanford.edu
ssh StanfordID@login.sherlock.stanford.edu

- Some useful commands:

pwd

cd

touch file.txt
vi file.txt

module avail orml avail
module load Xorml X
module list

list current working directory
change directory

create a new file called file.txt
open text editor in terminal

show available modules
load module X into workspace
list loaded modules

7128

Using the terminal
Text Editors

- when you open the file in the server’s terminal, you will be using the Vim text editor (https://www.vim.org/)

- vim is a very powerful text editor, but with relatively high entrance costs
- many modes of editing (e.g. inserting text is one of them)
- other modes allow creative text manipulation through “motions” (e.g. delete this text until you find a closing parenthesis)

- a good starter is Vim’s own tutorial: type vimtutor in the terminal
- the first couple of times can feel slow and frustrating, but with practice you will hardly want to use anything else
- NeoVim (https://neovim.io/) is an alternative option (a fork/rebuild of Vim with a more modern interface)

- other nice text editors (more user friendly) include: Nano, Emacs, and Sublime Text

Transferring files to/from servers

- Windows:

- Use SecureCRT + SecureFX (paid software, free for Stanford students).

More information click here.

- Mac/Linux:

- Use Cyberduck (free) or other paid software (e.g., Transmit).
- Through the terminal also works: see scp.

- Farmshare:

- Transfer through AFS: http://afs.stanford.edu
- If working in batch jobs, store in /farmshare/user_data/SUNetID

- Sherlock:

- Sherlock is pretty flexible. Once you need more information click here.

https://uit.stanford.edu/service/ess/scrt_sfx/securefx
http://afs.stanford.edu
https://www.sherlock.stanford.edu/docs/storage/data-transfer

Steps:
Say that | have a code.sbatch ready to run.

1. Open Fetch / SecureFX to start your connection:
Hostname: rice.stanford.edu
Username: <SUNet ID>
Password: <SUNet Password>

2. Goto /farmshare/user_data/<SUNet ID>.
3. Create a test_data folder and copy your code files there.

4. Start your ssh connection. Open the terminal and write:
ssh <SUNet ID>@rice.stanford.edu

5. From the terminal, change to the Farmshare directory.
cd /farmshare/user_data/<SUNet ID>/test_data

6. Run the code on the server.
sbatch test_batch.sbatch or srun test_batch.sbatch.

7. Check your status with squeue -u $USER.

Other SLURM useful commands

- Submit jobs to specific partitions:
#SBATCH -p hns,normal
(other: bigmem, gpu, long).

- Request more / less time than default:
#SBATCH - -time=01:00:00
(less time may make your code start faster).

- Request a specific amount of RAM:
#SBATCH - -mem=128000

(note: not all memory - core combinations are available).

- Switch from rice node to a wheat node:
srun - -qos=interactive --pty /bin/bash -1

11/ 28

2 | Parallel Computing

Why is some code faster than others?

- C s typically a fast language because it is a compiled language: it compiles your written code direct to machine
readable code

- Costs more in developer time though!

- Most languages convert your code to some intermediary form which in turn converts to machine code (these are
called interpreted languages)

- e.g. Matlab, Stata, Python
- but easier to code and debug!

- (Julia is a compiled language, reason why it can be so competitive in terms of speed).
- Built-in packages are highly optimized
- B=X'X"1X"Y runs close to C

12 /28

Parallel Computing

- Custom algorithms — like value functions w/loops — can be slow though
- Options to go faster
1 Eliminate loops, use vectorized code
2 Write inner loop in C
- Matlab mex files
3 Just-in-time compilers
- Julia; Python-Numba, @njit
- Run slower first time, then much faster

4 Parallelization Today!
5 Really parallel: GPU, multi-GPU nodes

- Python: cupy, numba, dask, pytorch; Julia...
- Lots of digestible material from CS

13

28

Intuition for parallel computing

We are used to running code like this:

14/ 28

Intuition for parallel computing

We are used to running code like this: But we could do something else instead:

[Task 2.1] [Task 2.2] [Task 2.3] [Task 2.4]

14 / 28

Intuition for parallel computing

We are used to running code like this: But we could do something else instead:

Task 1

paraljel computing

Task 2.1 [Task 2. 2] [Task 2. 3] Task 2.4

14/ 28

Gains of going parallel

- Does our runtime increase linearly with the number of parallel processes?

NO!
- Collecting and organizing output from different “workers" also requires time
- some packages streamlines this process for the user, see e.g. Pytorch

- Problems can be divided into

1. scalability: how effectively we can divide the original problem into smaller tasks

2. granularity: the amount of work required in each subtask
- A problem is well suited for parallelization if it is scalable and coarse (the latter meaning it requires more

computation per subtask then communication across them)

15/ 28

Gains of going parallel

Moreover, bottleneck of algorithm could be elsewhere.

=

T
] 457, -
7 1 i
| Fid
% L] Physical cores | —1
— E I PR
‘é’ "?i 5 } 1=
£ P 4 LT
53 :
]
T, I
I
|
)) O
= 1 2 3 4 5 & 7 8
of cores # of cores
= Mean Min-max = Mean Min-max
(a) Computing time (s) (b) Performance gains.

Figure 12: Results in Python with different number of processors. Number of experiments:
20.

Figure: Solving a life-cycle problem in Python, Fernandez-Villaverde and Valencia (2018)

/ 28

“Off-the-shelf” Parallelization on the CPU

- Numba allows certain for loops to be automatically parallelized by simply adding a decorator to the desired code.

- Example:

from numba import prange

start = time.time ()
@numba. jit (nopython=True, parallel=True)
def monte_carlo_pi(nsamples):
acc = 0
for i in prange(nsamples):
X = random.random ()
y = random.random ()
if (x »x 2 +y »x 2) < 1.0:
acc += 1
return 4.0 « acc / nsamples

print(monte_carlo_pi(10_000_000))

end = time.time ()
print(end - start)

17

28

“Off-the-shelf" Parallelization on the GPU

- If we want to run code on the GPU, one package to leverage on is cupy

- In a similar spirit to Numba, it translates numpy code to something GPUs can also run
- In some cases, it can be as easy as changing np to cp

- In others, it may require some re-thinking and vectorization

- Example:

import cupy as cp
import time

start = time.time ()
def monte_carlo_pi(nsamples):
acc = 0
x = cp.random.rand (nsamples)
y = cp.random.rand(nsamples)
X = cp.power(x,2)
y = cp.power(y,2)
acc = cp.sum(cp.less(x + y,1.0))
return 4.0 + acc / nsamples

print (monte_carlo_pi(10_000_000))
end = time.time ()

print(end - start) 18 / 28

Writing your kernel

- We will discuss here one step further: implementing the GPU code ourselves
- What is a CUDA kernel? elementwise function to run on the “device” (aka the GPU)
- The host (aka the CPU) sends blocks to be run in parallel on GPU

- Technically, we would have to write in C CUDA (language for NVIDIA GPUS).

- For other types of GPU’s (eg AMD), we would have to write in a different language.
- Fortunately, there are also similar tools for them (Numba itself).

- Now “easy” to write with Numba in Python (and Julia, matlab options) thanks to “translators”.

- typical complication: GPU memory is separate, need to initialize/end to GPU
- have to be careful with indexing

Writing your kernel

Example of a kernel

from __future__ import division
from numba import cuda

import numpy

import math

CUDA kernel

@cuda. jit

def matmul (A, B, C):

""" Perform matrix multiplication of C=A « B """

row, col = cuda.grid(2)
if row < C.shape[0] and col < C.shape[1]:
tmp = 0.

for k in range(A.shape[1]):
tmp += A[row, k] * B[k, col]
C[row, col] = tmp

20/ 28

Writing your kernel

This is the host code, your Python file that will call your kernel.

A = numpy. full ((24, 12), 3, numpy.float) # matrix containing all 3’s
B = numpy. full ((12, 22), 4, numpy.float) # matrix containing all 4’s
Copy the arrays to the device

A_global_mem = cuda.to_device (A)

B_global_mem = cuda.to_device (B)

Allocate memory on the device for the result

C_global_mem = cuda.device_array((24, 22))

Configure the blocks

threadsperblock = (16, 16)

blockspergrid_x = int(math.ceil (A.shape[0] / threadsperblock[0]))
blockspergrid_y = int(math.ceil (B.shape[1] / threadsperblock[1]))
blockspergrid = (blockspergrid_x, blockspergrid_y)

Start the kernel

matmul[blockspergrid , threadsperblock](A_global_mem, B_global_mem, C_global_mem)
Copy the result back to the host

C = C_global_mem.copy_to_host()

print (C)

Challenge Exercise

- Write down a CUDA kernel for our monte-carlo estimation of 7t

22 /28

Running GPU code on the server

To run GPU code on the server, the batch file should require the proper resources, as in example below

#!/bin/bash
#SBATCH -p gpu
#SBATCH -c 10
#SBATCH -G 1

cd change_to_appropriate_directory
module load relevant_softwares_and_packages
python3 run_your_code.py

Alternatively, you can also ask for an interactive session with GPUs (useful for debugging)
srun -pty -partition=gpu -gres=gpu:l -qos=interactive $SHELL -1

In Farmshare this is less useful since you may have to wait a long time to access a GPU compatible node

3|Al, LLMs and Coding

LLMs

- LLMs are Large Language Models

- In a nutshell, they are parametrized distributions of text based on some prior context
- aka stochastic parrots

- Main use cases for economists? (as of now...)
- coding
- writing

- summarizing text

- Famous LLMs out there: GPT, Llama, Bard (GPT and Llama have much better performance than Bard)

Chat GPT

Python API

- Install package openai

- Obtain API Key from their website

import openai
openai.api_key = "sk..."
models = openai.Model. list ()

print the first model’s id
print (models.data[0].id)

chat_completion = openai.ChatCompletion.create (model="gpt-3.5-turbo",
messages=[{"role":

temperature=0.0)

Requires paid plan of Open Al =/

"Helloyworld"}],

25

28

Chat GPT

Prompt Tips

Based on Andrej Karpathy’s talk at Tesla
- Chain of thought
- give examples
- “think step by step”
- sample multiple attempts
- prompt again
- remove stochasticitiy
- ask the LLM to reflect
- condition on good performance (LLMs original objectives are not yours!)

- “you are a leading expert in this topic”/“you have 1Q 120” (careful with too much though)
- allows the LLM to place less probabilistic mass in low quality solutions
- tell the LLM what they are not good at (“use a calculator”)

Note however that prompt engineering faces similar developing-vs-run time trade-off

26 /28

Github Co-Pilot/Chat

- If you want to speed up your coding routine, | strongly recommend Github Co-Pilot
(https://github.com/features/copilot).

- Itis an Al based on state-of-the-art natural language processing models that helps you complete code

- What is amazing about Github Pro is that it is not just a code completion tool, but it can also write code for you. It
is not perfect, but it is a great tool to speed up your coding routine.

- For example, it can write Python code for you, and it can also write CUDA kernels for you.
- | will show you a demo of it in the next slide.

- The last 3 bullets were written by Github Co-Pilot!

- Thankfully free Stanford students!

https://www.cursor.com/ is another great option, but paid

S

https://www.cursor.com/

Personal advice on using these

- Of course it helps a lot
- But: codes that run # codes that are correct

- every output of the Al will very likely run fine!
- its output can look correct or be almost correct

\
A

y g] what is 3240328409/38749823794
£

@ The result of dividing 3,240,328,409 by 38,749,823,794 is approximately 0.0835736
(rounded to seven decimal places).

- Make sure you understand its suggestion
- use it as a co-pilot, not a pilot

28 /28

	High Performance Computing
	University Clusters vs. Paid Services
	Using Stanford Servers

	Parallel Computing
	AI, LLMs and Coding

