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Plan for today

I Recap on consumption-savings with uncertainty
I finite and markovian states

I Tauchen method to approximate AR(1)

I Consumption-savings with uncertainty (?)

I Coding
I Simulation of time-series:

I AR(1)
I Markov Chains



Consumption-Savings with Uncertainty
Recap

I Sequential problem with uncertainty
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I Assume income depends only on today’s state + St is
markovian

I Bellman equation is:

V (b, s) = max
c,b′

u(c) + β
∑
s′

P
(
s ′|s
)
V
(
b′, s ′

)
(4)

c + R−1b′ = b + y(s), c ≥ 0, b′ ≥ b (5)

I New object: P(s ′|s)



Tauchen Method

I The framework we introduced allows us to model uncertainty
represented by finite states

I But in reality, the state space of uncertainty can actually be
continuous

I Example: income can be $203.43, $12.41,...

I i.e. data from income is not discretized as in the model

I One possible model for income process is AR(1):

yt = λyt−1 + σεεt , εt ∼ N(0, 1) iid (6)

I How to translate this to a finite state Markov chain?
I → Tauchen Method



Tauchen Method
I Broad picture: discretize state space and say that the realized

state is one the closest to continuous-variable
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I What to do at the boundaries? Use only half the interval.



Tauchen Method
I Broad picture: discretize state space and say that the realized

state is one the closest to continuous-variable

0
y. . . . . .. . .

yt+1 = sj

sis0 sNsi−1 si+1sjsj−1 sj+1s1 s2

Pr(yt+1 = sj |yt = si )

m

yt+1 ∈
(
sj−1 +

w

2
, sj +

w

2

)

stepsize w

I Use the fact that yt is AR(1) to calculate

Pr
(
yt+1 ∈

(
sj−1 +

w

2
, sj +

w

2

))
I What to do at the boundaries? Use only half the interval.



Tauchen Method
I Broad picture: discretize state space and say that the realized

state is one the closest to continuous-variable

0
y. . . . . .. . .

yt+1 = sj

sis0 sNsi−1 si+1sjsj−1 sj+1s1 s2

Pr(yt+1 = sj |yt = si )

m

yt+1 ∈
(
sj−1 +

w

2
, sj +

w

2

)
stepsize w

I Use the fact that yt is AR(1) to calculate

Pr
(
yt+1 ∈

(
sj−1 +

w

2
, sj +

w

2

))
I What to do at the boundaries? Use only half the interval.



Tauchen Method
I Broad picture: discretize state space and say that the realized

state is one the closest to continuous-variable

0
y. . . . . .. . .

yt+1 = sj

sis0 sNsi−1 si+1sjsj−1 sj+1s1 s2

Pr(yt+1 = sj |yt = si )

m

yt+1 ∈
(
sj−1 +

w

2
, sj +

w

2

)
stepsize w

I Use the fact that yt is AR(1) to calculate

Pr
(
yt+1 ∈

(
sj−1 +

w

2
, sj +

w

2

))

I What to do at the boundaries? Use only half the interval.



Tauchen Method
I Broad picture: discretize state space and say that the realized

state is one the closest to continuous-variable

0
y. . . . . .. . .

yt+1 = sj

sis0 sNsi−1 si+1sjsj−1 sj+1s1 s2

Pr(yt+1 = sj |yt = si )

m

yt+1 ∈
(
sj−1 +

w

2
, sj +

w

2

)
stepsize w

I Use the fact that yt is AR(1) to calculate

Pr
(
yt+1 ∈

(
sj−1 +

w

2
, sj +

w

2

))
I What to do at the boundaries? Use only half the interval.



Tauchen Method

I Let [Πij ] be the transition matrix

I We set:

Πij = Pr
[
yt+1 ∈

(
sj−1 +

w

2
, sj +

w

2

)]
(7)

= Pr
[
sj−1 +

w

2
< φyt + σεt+1 < sj +

w

2

]
(8)

= Pr

[
sj−1 + w

2 − φyt
σ

< εt+1 <
sj + w

2 − φyt
σ

]
(9)

= Φ

(
sj + w

2 − φyt
σ

)
− Φ

(
sj−1 + w

2 − φyt
σ

)
(10)

= Φ

(
sj + w

2 − φsi
σ

)
− Φ

(
sj−1 + w

2 − φsi
σ

)
(11)

where Φ is the cumulative distribution function of the
standard normal



Tauchen Method
I At the boundaries:

Πi1 = Φ

(
s0 + w

2 − φsi
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)
(12)

ΠiN = 1− Φ

(
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I How to set s0 and sN?
I Support of yt is (−∞,∞).
I Typically truncate at 3 standard deviations.
I Hence,

s0 = −m ×

√
σ2

1− φ2
(14)
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m = 3 (16)



Files

I markovappr section.m: Tauchen for Matlab

I markovsimul section.m: simulates markov chain for
Matlab

I tauchen.py: Tauchen for Python

I simulate mc.py: simulates markov chain for Python



Consumption-Savings with Uncertainty
Recap

I Sequential problem with uncertainty
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I Assume income depends only on today’s state + St is
markovian

I Bellman equation is:
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c,b′

u(c) + βEs′
[
V
(
b′, s ′

)
|s
]

(20)

c + R−1b′ = b + y(s), c ≥ 0, b′ ≥ b (21)



Consumption-Savings with Uncertainty

I Once we discretize, we have

V (b, s) = max
c,b′

u(c) + β
∑
s′

P
(
s ′|s
)
V
(
b′, s ′

)
(22)

c + R−1b′ = b + y(s), c ≥ 0, b′ ≥ b (23)

I Writing with cash-in-hand wt := bt + yt
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Consumption-Savings with Uncertainty
Solution Algorithm

1. Discretize income grid and construct Markov matrix to
approximate AR(1) process for income.

2. Define grids for cash-on-hand and bond holdings.
3. Guess a value function V (0)(w , s).
4. Updating the value function:

i) Fix a point in the state space (say (wi , sj)).
ii) For each possible savings bk , compute the right-hand side of

the Bellman equation

Tkij = u

(
wi −

b′k
R

)
+ β

∑
s′

[
V (0) (w ′, s ′)× P (s ′ | sj)

]
(26)

w ′ = b′k + y(s ′) (27)

5. Set V (1)(wi , sj) = maxk Tkij .
6. Having done this for all i , j , compute distance between new

and guessed value functions d = ||V (1) − V (0)||.
7. If d is smaller than some pre specified threshold, claim

convergence. If not, iterate with V (1) replacing V (0).



Consumption-Savings with Uncertainty
Solution Algorithm

Some reminders and points to take care:

I Note w ′ = b′k + y ′ might not be in original grid → find closest
point

I Impose non-negativity constraint of consumption as usual

I Careful with bounds on the grids, check results are insensitive
to these

I Remember to also save policy functions

I This problem can take longer to run on a finer grid, so try to
make the implementation efficient (Numba and parallel code!)



Consumption-Savings with Uncertainty
Simulation

1. Simulate the markov income for T periods, yielding a
sequence {s0, . . . , sT−1}.

2. Set initial bond holdings b−1 and compute initial
cash-on-hand w0 = s0 + b−1.

3. Compute optimal consumption and bond holdings from policy
functions

c0 = cpol(w0, s0), b0 = bpol(w0, s0) (28)

4. Compute next period cash-on-hand w1 = s1 + b0.

5. Iterate until time T .



Simulation of time-series
AR(1)

I We define the autoregressive of order 1 (AR(1)) process as

yt+1 = φyt + σεt+1 (29)

εt ∼ N(0, 1) (30)

I Simulation:

i) Set an initial value y0 = y
ii) Simulate ε from N(0, 1)
iii) Calculate y1 from (??)
iv) Iterate until the desired horizon (say T )

I Software will typically have pre-built functions to perform the
simulation of normal random variables, but we can always
implement our own random-number generator if we can
generate uniform random numbers



Moving Average Processes

I We can generalize autoregressive processes to an
autoregressive moving-average process, which allows
unobservables/shocks to affect the variable of interest with
lags

yt = φyt−1 + θ0ut + θ1ut−1 (31)

I This is an ARMA(1,1) process, since ut−1 has a predictive
effect on yt

I Subject to some conditions, we can map moving-average
processes to “pure” AR(p) processes (and vice-versa)

I More about this in the problem set and also in time-series
econometrics



Simulation of time-series
Markov Chain

I Reference: ?, Chapter 11
I Suppose {st} is a Markov chain

with states {s1, ..., sN} and transition matrix Π = [Πij ]
I Start with some value si at date 0. We want to assign values

st for t = 1, 2, ...T
1. compute cumulative distribution of the Markov chain Πc

Πc
ij =

j∑
k=1

Πik = Pr (st ≤ sk |st−1 = si )

2. set initial state and simulate T random numbers from a
uniform distribution over [0, 1]: {pt}Tt=1

3. assume Markov chain was in state i = 1, find the index j such
that

Πc
i(j−1) < pt ≤ Πc

ij for j ≥ 2

then sj is the state in period t. If pt ≤ Πc
i1 then s1 is the state

in period t.



Simulation
Fixing the seed

I Sometimes we may want to generate the same historical
realization many times, to compare different procedures over
the same series

I For example: want to compare consumption paths when the
agent is more or less patient

I To do so, we have to fix the seed of the random number
generator (rng) in our programs

I In Matlab use rng, in Python use np.random.default rng
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