ECON 210: Section 7

Marcelo Sena

Plan for today

P> Recap on consumption-savings with uncertainty
> finite and markovian states

Tauchen method to approximate AR(1)

Consumption-savings with uncertainty (?)

Coding

Simulation of time-series:

> AR(1)
» Markov Chains

Consumption-Savings with Uncertainty
Recap
» Sequential problem with uncertainty

{c(SY) bt st)2 Zzﬁtp (e (%)

tOtost
o (1) + R0 (8) = beca (S72) + ye ()
¢ (%) > 0,5 (S%) > b

» Assume income depends only on today's state + S; is
markovian

P Bellman equation is:

V(b,s)—maxu +BZP s

c+R W =b+y(s),CZOJD'ZQ
> New object: P(s'|s)

Tauchen Method

v

The framework we introduced allows us to model uncertainty
represented by finite states

But in reality, the state space of uncertainty can actually be
continuous

Example: income can be $203.43, $12.41,...
i.e. data from income is not discretized as in the model

One possible model for income process is AR(1):

Ve = \Yi—1 + ocer, € ~ N(0,1) iid (6)

How to translate this to a finite state Markov chain?
» — Tauchen Method

Tauchen Method

» Broad picture: discretize state space and say that the realized
state is one the closest to continuous-variable

<l

.

S0 S5 Si-1 S 541 Si-1 Si Sit1 SN

—~

stepsize w

Tauchen Method

» Broad picture: discretize state space and say that the realized

state is one the closest to continuous-variable

Pr(yt+1 = 5j|)’t = s)

stepsize w

<l

SN

Tauchen Method

» Broad picture: discretize state space and say that the realized
state is one the closest to continuous-variable

S0 S1 S

w w
Yi+1 € (Sj—l + .5+ 7)

Pr(yt+1 = 5j|)’t = s)

+—F—+

Sji-1§j Sj+1 Si-1 S Si+1
Y41 =5 stepsize w

2 2

<l

SN

Tauchen Method

» Broad picture: discretize state space and say that the realized

state is one the closest to continuous-variable

Pr(yt+1 = Sj\Yt = s)

S SIS Si-1 5 Sj+41 Si-1 S Sitl
Yt+1 = 5 stepsize w
w w
Yey1r €St 55+ 5

» Use the fact that y; is AR(1) to calculate

w w
(o o o)

<l

SN

Tauchen Method

» Broad picture: discretize state space and say that the realized
state is one the closest to continuous-variable

Pr(yt+1 = Sj\Yt = s)

e S o e S e e
S0 s1 S Si-1 S Sj+1 Si—-1 Sj Si+1 SN
Yt+1 = 5 stepsize w
w w
Ye+1 € (5}'—1+§,5j+5>

» Use the fact that y; is AR(1) to calculate

w w
(e o o)

» What to do at the boundaries? Use only half the interval.

Tauchen Method

> Let [;] be the transition matrix

> We set:
My = Pr _yt+1 € (sj,1 + g,s- + g)] (7)
= Pr sj 1+2<¢}/t+0'6t+1<51—|‘v2v:| (8)
py| Ttz v ¢yt<et+1<sj+2¢yt] (9)
i o o
_ o <Sj+ V{g— <Z5)/t> o <5j—1 +;2V —<Z5)/t> (10)

:¢<‘°'f+v2v_¢s"> —¢<Sf‘1+g_¢s"> (11)
g g

where @ is the cumulative distribution function of the
standard normal

Tauchen Method
> At the boundaries:
My = o (Sﬁv?v ¢S">
g
My=1— <M>
g

> How to set sy and sp?

» Support of y; is (—oo, 00).
» Typically truncate at 3 standard deviations.

» Hence,

(12)

(13)

Files

» markovappr_section.m: Tauchen for Matlab

» markovsimul_section.m: simulates markov chain for
Matlab

» tauchen.py: Tauchen for Python

> simulate_mc.py: simulates markov chain for Python

Consumption-Savings with Uncertainty
Recap

» Sequential problem with uncertainty

‘P (S
P . >3 (< (5)

t=0 +—Q St
ct (S) + R b (ST) = b1 (S*1) + 31 (S7)
Ct (St) >0, by (St) >b

» Assume income depends only on today's state 4+ S; is
markovian

» Bellman equation is:

V(b,s) = max u(c) + BEy [V (V') |s]

c+RMW =b+y(s),c>0,b'>b

(20)

(21)

Consumption-Savings with Uncertainty

» Once we discretize, we have

V(b,s)—maxu +BZP ,s) (22)
c+R1b’:b—|—y(),c>0,b'>b (23)

» Writing with cash-in-hand w; := by + y;

/

V(w,s) = max u (W - ;) + BZ P(s'|s) V (w',s") (24)

/

b
W’:b’—i—y(s’),c:w—ﬁzo,b'zg (25)

Consumption-Savings with Uncertainty
Solution Algorithm

1.

=~ w

Discretize income grid and construct Markov matrix to
approximate AR(1) process for income.
Define grids for cash-on-hand and bond holdings.
Guess a value function V(O (w,s).
Updating the value function:
i) Fix a point in the state space (say (w;, s;)).
ii) For each possible savings by, compute the right-hand side of
the Bellman equation

Tig = u (i -)wz[)% P |5)] (6)

w' = b +y(s') (27)
Set V(l)(W,‘,Sj) = maxg Tk,J
Having done this for all i, j, compute distance between new
and guessed value functions d = ||V(1) — v(O)||.
If d is smaller than some pre specified threshold, claim
convergence. If not, iterate with V(1) replacing V(9.

Consumption-Savings with Uncertainty
Solution Algorithm

Some reminders and points to take care:

>

>

Note w' = b} + y’ might not be in original grid — find closest
point
Impose non-negativity constraint of consumption as usual

Careful with bounds on the grids, check results are insensitive
to these

Remember to also save policy functions

This problem can take longer to run on a finer grid, so try to
make the implementation efficient (Numba and parallel code!)

Consumption-Savings with Uncertainty

Simulation

1. Simulate the markov income for T periods, yielding a
sequence {sp,...,ST_1}

2. Set initial bond holdings b_1 and compute initial
cash-on-hand wy = s + b_1.

3. Compute optimal consumption and bond holdings from policy
functions
) = CpOI(Wo,So), bo = bPOI(Wo,So) (28)

4. Compute next period cash-on-hand w; = s; + byg.
5. Iterate until time T.

Simulation of time-series
AR(1)

» We define the autoregressive of order 1 (AR(1)) process as

Yt+1 = QY + 0€eq1 (29)
e¢ ~ N(0,1) (30)

» Simulation:
i) Set an initial value yp = y
ii) Simulate e from N(0,1)
iii) Calculate y; from (?7)
iv) Iterate until the desired horizon (say T)

» Software will typically have pre-built functions to perform the
simulation of normal random variables, but we can always
implement our own random-number generator if we can
generate uniform random numbers

Moving Average Processes

> We can generalize autoregressive processes to an
autoregressive moving-average process, which allows
unobservables/shocks to affect the variable of interest with
lags

Yt = ¢yr—1 + bour + O1ur—1 (31)
» This is an ARMA(1,1) process, since u;—1 has a predictive
effect on y;

» Subject to some conditions, we can map moving-average
processes to “pure” AR(p) processes (and vice-versa)

» More about this in the problem set and also in time-series
econometrics

Simulation of time-series
Markov Chain
» Reference: ?, Chapter 11
» Suppose {s;} is a Markov chain
with states {si, ..., sy} and transition matrix M = (]
» Start with some value s; at date 0. We want to assign values
ssfort=1,2,...T
1. compute cumulative distribution of the Markov chain T1°¢

J
n; = Z Mix = Pr(s; < silse—1 =s7)
k=1
2. set initial state and simulate T random numbers from a
uniform distribution over [0, 1]: {pt};l
3. assume Markov chain was in state i = 1, find the index j such
that

M8 _q) < pe <N for j > 2

then s; is the state in period t. If p, <15 then s is the state
in period t.

Simulation
Fixing the seed

> Sometimes we may want to generate the same historical
realization many times, to compare different procedures over
the same series

» For example: want to compare consumption paths when the
agent is more or less patient

» To do so, we have to fix the seed of the random number
generator (rng) in our programs

» In Matlab use rng, in Python use np.random.default_rng

Deaton, Angus, “Saving and Liquidity Constraints,”
Econometrica, 1991, 59 (5), 1221-1248.

Miao, Jianjun, Economic dynamics in discrete time, MIT press,
2020.

	References

