ECON 210: Section 7

Marcelo Sena

Plan for today

- Recap on consumption-savings with uncertainty
 - finite and markovian states
- ightharpoonup Tauchen method to approximate AR(1)
- Consumption-savings with uncertainty (?)
- Coding
- Simulation of time-series:
 - ► AR(1)
 - Markov Chains

Recap

Sequential problem with uncertainty

$$\max_{\left\{c_{t}\left(S^{t}\right),b_{t}\left(S^{t}\right)\right\}_{t=0}^{\infty}}\sum_{t=0}^{\infty}\sum_{S^{t}}\beta^{t}P\left(S^{t}\right)u\left(c_{t}\left(S^{t}\right)\right)\tag{1}$$

$$c_t(S^t) + R^{-1}b_t(S^t) = b_{t-1}(S^{t-1}) + y_t(S^t)$$
 (2)

$$c_t\left(S^t\right) \geq 0, b_t\left(S^t\right) \geq \underline{b}$$
 (3)

- Assume income depends only on today's state $+ S_t$ is markovian
- Bellman equation is:

$$V(b,s) = \max_{c,b'} u(c) + \beta \sum_{s'} P(s'|s) V(b',s')$$
 (4)

$$c + R^{-1}b' = b + y(s), c \ge 0, b' \ge \underline{b}$$
 (5)

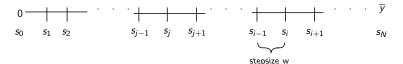
New object: P(s'|s)

- ► The framework we introduced allows us to model uncertainty represented by finite states
- But in reality, the state space of uncertainty can actually be continuous
- ► Example: income can be \$203.43, \$12.41,...
- ▶ i.e. data from income is not discretized as in the model
- One possible model for income process is AR(1):

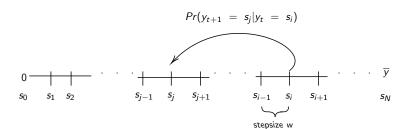
$$y_t = \lambda y_{t-1} + \sigma_{\epsilon} \varepsilon_t, \ \epsilon_t \sim N(0, 1) \ \text{iid}$$
 (6)

- ▶ How to translate this to a finite state Markov chain?
 - ▶ → Tauchen Method

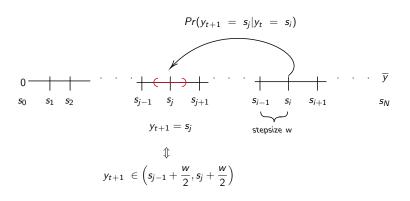
▶ Broad picture: discretize state space and say that the realized state is one the closest to continuous-variable



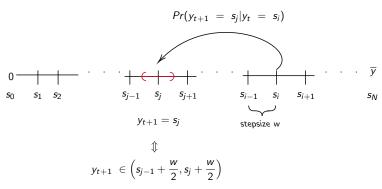
▶ Broad picture: discretize state space and say that the realized state is one the closest to continuous-variable



▶ Broad picture: discretize state space and say that the realized state is one the closest to continuous-variable



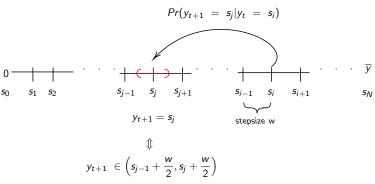
▶ Broad picture: discretize state space and say that the realized state is one the closest to continuous-variable



▶ Use the fact that y_t is AR(1) to calculate

$$Pr\left(y_{t+1} \in \left(s_{j-1} + \frac{w}{2}, s_j + \frac{w}{2}\right)\right)$$

▶ Broad picture: discretize state space and say that the realized state is one the closest to continuous-variable



▶ Use the fact that y_t is AR(1) to calculate

$$Pr\left(y_{t+1} \in \left(s_{j-1} + \frac{w}{2}, s_j + \frac{w}{2}\right)\right)$$

What to do at the boundaries? Use only half the interval.

- Let $[\Pi_{ij}]$ be the transition matrix
- ► We set:

$$\Pi_{ij} = Pr \left[y_{t+1} \in \left(s_{j-1} + \frac{w}{2}, s_j + \frac{w}{2} \right) \right] \tag{7}$$

$$= Pr \left[s_{j-1} + \frac{w}{2} < \phi y_t + \sigma \varepsilon_{t+1} < s_j + \frac{w}{2} \right] \tag{8}$$

$$= Pr \left[\frac{s_{j-1} + \frac{w}{2} - \phi y_t}{\sigma} < \varepsilon_{t+1} < \frac{s_j + \frac{w}{2} - \phi y_t}{\sigma} \right] \tag{9}$$

$$= \Phi \left(\frac{s_j + \frac{w}{2} - \phi y_t}{\sigma} \right) - \Phi \left(\frac{s_{j-1} + \frac{w}{2} - \phi y_t}{\sigma} \right) \tag{10}$$

$$= \Phi \left(\frac{s_j + \frac{w}{2} - \phi s_j}{\sigma} \right) - \Phi \left(\frac{s_{j-1} + \frac{w}{2} - \phi s_j}{\sigma} \right) \tag{11}$$

where Φ is the cumulative distribution function of the standard normal

► At the boundaries:

$$\Pi_{i1} = \Phi\left(\frac{s_0 + \frac{w}{2} - \phi s_i}{\sigma}\right) \tag{12}$$

$$\Pi_{iN} = 1 - \Phi\left(\frac{s_N - \frac{w}{2} - \phi s_i}{\sigma}\right) \tag{13}$$

- ► How to set s_0 and s_N ?
 - ▶ Support of y_t is $(-\infty, \infty)$.
 - ► Typically truncate at 3 standard deviations.
 - ► Hence,

$$s_0 = -m \times \sqrt{\frac{\sigma^2}{1 - \phi^2}} \tag{14}$$

$$s_N = m \times \sqrt{\frac{\sigma^2}{1 - \phi^2}} \tag{15}$$

$$m=3 \tag{16}$$

Files

- markovappr_section.m: Tauchen for Matlab
- markovsimul_section.m: simulates markov chain for Matlab
- tauchen.py: Tauchen for Python
- simulate_mc.py: simulates markov chain for Python

Recap

Sequential problem with uncertainty

$$\max_{\{c_t(S^t),b_t(S^t)\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \sum_{S^t} \beta^t P\left(S^t\right) u\left(c_t\left(S^t\right)\right) \tag{17}$$

$$c_{t}\left(S^{t}\right) + R^{-1}b_{t}\left(S^{t}\right) = b_{t-1}\left(S^{t-1}\right) + y_{t}\left(S^{t}\right)$$

$$c_{t}\left(S^{t}\right) \geq 0, b_{t}\left(S^{t}\right) \geq \underline{b}$$

$$(18)$$

- Assume income depends only on today's state $+ S_t$ is markovian
- Bellman equation is:

$$V(b,s) = \max_{c,b'} u(c) + \beta E_{s'} \left[V(b',s') | s \right]$$
 (20)

$$c + R^{-1}b' = b + y(s), c \ge 0, b' \ge \underline{b}$$
 (21)

Once we discretize, we have

$$V(b,s) = \max_{c,b'} u(c) + \beta \sum_{s'} P(s'|s) V(b',s')$$
 (22)

$$c + R^{-1}b' = b + y(s), c \ge 0, b' \ge \underline{b}$$
 (23)

lacktriangle Writing with cash-in-hand $w_t := b_t + y_t$

$$V(w,s) = \max_{b'} u\left(w - \frac{b'}{R}\right) + \beta \sum_{s'} P\left(s'|s\right) V\left(w',s'\right)$$
 (24)

$$w' = b' + y(s'), c = w - \frac{b'}{R} \ge 0, b' \ge \underline{b}$$
 (25)

Solution Algorithm

- 1. Discretize income grid and construct Markov matrix to approximate AR(1) process for income.
- 2. Define grids for cash-on-hand and bond holdings.
- 3. Guess a value function $V^{(0)}(w,s)$.
- 4. Updating the value function:
 - i) Fix a point in the state space (say (w_i, s_j)).
 - ii) For each possible savings b_k , compute the right-hand side of the Bellman equation

$$T_{kij} = u\left(w_i - \frac{b'_k}{R}\right) + \beta \sum_{s'} \left[V^{(0)}(w', s') \times P(s' \mid s_j)\right]$$
(26)
$$w' = b'_k + y(s')$$
(27)

- 5. Set $V^{(1)}(w_i, s_j) = \max_k T_{kij}$.
- 6. Having done this for all i, j, compute distance between new and guessed value functions $d = ||V^{(1)} V^{(0)}||$.
- 7. If d is smaller than some pre specified threshold, claim convergence. If not, iterate with $V^{(1)}$ replacing $V^{(0)}$.

Consumption-Savings with Uncertainty Solution Algorithm

Some reminders and points to take care:

- Note $w' = b'_k + y'$ might not be in original grid \rightarrow find closest point
- Impose non-negativity constraint of consumption as usual
- Careful with bounds on the grids, check results are insensitive to these
- Remember to also save policy functions
- ► This problem can take longer to run on a finer grid, so try to make the implementation efficient (Numba and parallel code!)

Consumption-Savings with Uncertainty Simulation

- 1. Simulate the markov income for T periods, yielding a sequence $\{s_0, \ldots, s_{T-1}\}$.
- 2. Set initial bond holdings b_{-1} and compute initial cash-on-hand $w_0 = s_0 + b_{-1}$.
- Compute optimal consumption and bond holdings from policy functions

$$c_0 = c^{pol}(w_0, s_0), b_0 = b^{pol}(w_0, s_0)$$
 (28)

- 4. Compute next period cash-on-hand $w_1 = s_1 + b_0$.
- Iterate until time T.

Simulation of time-series AR(1)

ightharpoonup We define the autoregressive of order 1 (AR(1)) process as

$$y_{t+1} = \phi y_t + \sigma \varepsilon_{t+1} \tag{29}$$

$$\varepsilon_t \sim N(0,1)$$
 (30)

- Simulation:
 - i) Set an initial value $y_0 = y$
 - ii) Simulate ϵ from N(0,1)
 - iii) Calculate y_1 from (??)
 - iv) Iterate until the desired horizon (say T)
- ➤ Software will typically have pre-built functions to perform the simulation of normal random variables, but we can always implement our own random-number generator if we can generate uniform random numbers

Moving Average Processes

We can generalize autoregressive processes to an autoregressive moving-average process, which allows unobservables/shocks to affect the variable of interest with lags

$$y_t = \phi y_{t-1} + \theta_0 u_t + \theta_1 u_{t-1} \tag{31}$$

- This is an ARMA(1,1) process, since u_{t-1} has a predictive effect on y_t
- ► Subject to some conditions, we can map moving-average processes to "pure" AR(p) processes (and vice-versa)
- More about this in the problem set and also in time-series econometrics

Simulation of time-series

Markov Chain

- ► Reference: ?, Chapter 11
- ▶ Suppose $\{s_t\}$ is a Markov chain with states $\{s_1, ..., s_N\}$ and transition matrix $\Pi = [\Pi_{ij}]$
- Start with some value s_i at date 0. We want to assign values s_t for t = 1, 2, ... T
 - 1. compute cumulative distribution of the Markov chain Π^c

$$\Pi_{ij}^c = \sum_{k=1}^J \Pi_{ik} = \Pr(s_t \le s_k | s_{t-1} = s_i)$$

- 2. set initial state and simulate T random numbers from a uniform distribution over [0,1]: $\{p_t\}_{t=1}^T$
- 3. assume Markov chain was in state i = 1, find the index j such that

$$\Pi_{i(i-1)}^c < p_t \leq \Pi_{ii}^c$$
 for $j \geq 2$

then s_j is the state in period t. If $p_t \leq \Pi_{i1}^c$ then s_1 is the state in period t.

Simulation

Fixing the seed

- Sometimes we may want to generate the same historical realization many times, to compare different procedures over the same series
- ► For example: want to compare consumption paths when the agent is more or less patient
- ► To do so, we have to fix the seed of the random number generator (rng) in our programs
- In Matlab use rng, in Python use np.random.default_rng

Deaton, Angus, "Saving and Liquidity Constraints," *Econometrica*, 1991, *59* (5), 1221–1248.

Miao, Jianjun, *Economic dynamics in discrete time*, MIT press, 2020.