ECON 210: Section 10

Marcelo Sena

Plan for today

- Optimal control summary (deterministic + stochastic)
- ► Stochastic optimal control problem (Exam 2019)

Deterministic: Hamiltonian Approach

We are interested in solving

$$\max_{\{c(t)\}_{t\in[0,T]}} \int_0^T u(s(t),c(t),t)dt \tag{1}$$

$$\dot{s}(t) = g(s(t), c(t), t) \tag{2}$$

$$f(s(t),c(t),t)\geq 0 \tag{3}$$

$$s(0)$$
 given (4)

Deterministic: Hamiltonian Approach

Approach 1: follows the continuous-time analogue of lagrangian

$$H(s,c,\lambda,t) = u(s,c,t) + \lambda g(s,c,t)$$
 (5)

Necessary conditions for optimality

$$\frac{\partial H(s^*,c^*,\lambda^*,t)}{\partial c}=0$$

ii
$$\frac{\partial H(s^*,c^*,\lambda^*,t)}{\partial s} = -\dot{\lambda}^*(t)$$

iii
$$\frac{\partial H(s^*,c^*,\lambda^*,t)}{\partial \lambda} = \dot{s}^*$$

iv boundary conditions $s^*(0) = s_0$

With concavity, we get sufficiency.

Deterministic: HJB Approach

Approach 2: follows the continuous-time analogue of the bellman equation

$$0 = \max_{c(t)} \underbrace{u(s(t), c(t), t)}_{\text{"dividend-yield"}} + \underbrace{V_s(s(t), t)\dot{s}(t) + V_t(s(t), t)}_{\text{"capital-gains"}}$$
s.t.
$$\dot{s}(t) = g(s(t), c(t), t)$$

$$s(t) \text{ given}$$

$$(6)$$

Finite and Infinite-Horizon

- ▶ In finite horizon, optimal policy or restrictions will imply c(T) (e.g. "eat everything").
- ▶ In infinite horizon, we must add an analogue *boundary* condition, which is called the transversality condition

$$\lim_{T \to \infty} \lambda(T)s(T) = 0 \text{ or } \lim_{T \to \infty} e^{-\rho T} V(s_T) = 0$$
 (7)

Stochastic Case

- ► In continuous-time, to model "shocks" we use brownian motion (does not restrict to normality!)
- ► We proceed here with the HJB approach, but there is an analogue of the Hamiltonian approach (stochastic maximum principle)
- ► The stochastic analogue of the HJB follows the same principle as in the deterministic case and the discrete-time bellman equation

$$0 = \max_{c(t)} \underbrace{u(s(t), c(t), t)}_{\text{"dividend-yield"}} + \underbrace{E_t [dV(s, t)]}_{\text{expected capital gains}}$$
(8)

where we postulate the evolution of the state to follow the stochastic version of an ODE, a stochastic differential equation (SDE)

$$ds_t = \mu_{s,t}dt + \sigma_{s,t}dB_t \tag{9}$$

Stochastic Case

- We can use Ito's lemma to calculate $E_t[dV(s,t)]$
- Crucially, this transforms the problem of computing expectations into one of determining the derivatives of V
- ► The same equation can be written if the environment is subject to shocks of other nature in continuous-time, namely, jumps (shocks that arrive at some poisson rate).
- Similarly, we can extend the agent's control to affect the arrival or impact of these poisson shocks
- In short, very tractable, elegant and lots of flexibility!

Stochastic Case

A Particular, Common and Useful Case

When we have time-separable utility with exponential discounting (very common), the HJB equation reduces to

"required total return on capital"
$$= \max u(c) + V_s(s,t)\mu_s + V_t(s,t)\underbrace{\mu_t}_{=1} + \underbrace{\frac{1}{2}V_{ss}(s,t)\sigma_s^2}_{\text{Ito term}}$$

Great textbook reference for SDEs and control: Oksendal At Stanford, MATH236 covers part of this book.

Stochastic Case - Further Topics

Further stochastic control problems not covered in this course:

- SDE's subject to jump shocks
- Marginal costs to exert control (instantaneous control)
- Fixed costs to exert control (impulse control)
- Optimal stopping

Excellent textbook and intuitive treatment of the last 3: Dixit "The Art of Smooth Pasting"